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1 Introduction 

It is important that enterprise-class infrastructure software systems, like the ActiveMQ message 

broker, provide system administrators with a mechanism through which they can monitor the 

overall health and performance of that system. Without a monitoring system in-place, the 

reliability, high-availability, and performance of the system, as a whole, are compromised. This 

guide describes the feature-functionality of such a monitoring system for ActiveMQ 5.3. The 

monitoring system is referred to as the “ActiveMQ Monitor” or “AMon” for short.    

 

2 ActiveMQ’s Default Advisory System 

The ActiveMQ message broker does provide an out-of-the-box monitoring system that 

comprises a series of “Advisory” topics and the advisory messages that the message broker 

publishes to those topics. However, this advisory system is static in nature, because the system‟s 

set of advisory topics and event messages cannot be customized and/or extended by the end-user 

without having to make changes to ActiveMQ‟s core components.    

Advisory messages can be thought of as events that inform your management clients of certain 

conditions that have already occurred within the ActiveMQ message broker.  ActiveMQ 

management clients can thus monitor the message broker by subscribing to the Advisory topics 

and processing the messages that are read from those topics. However, the advisory system does 

not allow you to monitor the ActiveMQ message broker such that you can detect if a particular 

runtime state is beginning to reach a critical point. For example, the advisory system does not 

allow you to set certain thresholds against memory, threads, message queues, etc.  

Starting with version 5.2 of ActiveMQ, this advisory system covers some 26 different events. 

More information on this system can be found here.  Here is a sampling of the types of events 

that are generated by the advisory system.   

o Consumers, producers, and connections starting and stopping 

o Temporary destinations being created and destroyed 

o Messages expiring on topics and queues 

o Brokers sending messages to destinations with no consumers. 

o Connections starting and stopping 

o No consumer is available to process messages being sent on a Topic or Queue 

o Slow queue or topic consumer 

o Fast queue or topic producer 

o Discarded message (e.g., expired message) from queue or topic  

o Message consumed from queue or topic 

o Message delivered to broker 

o A usage resource is full 

o A slave broker has taken over for a master.    

http://activemq.apache.org/advisory-message.html
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3 The AMon Monitoring System  

AMon is a monitoring system that is specifically designed for the ActiveMQ message broker.  

The system comprises two primary modules: Monlet Container and SNMP Agent.   

 

3.1 Monlet Container   

AMon does not perform the actual monitoring of an ActiveMQ message broker. What AMon 

provides is a container or framework that facilitates the rapid development and deployment of 

one or more user-defined ActiveMQ monitoring agents, or “Monlets” as they are referred to in 

this document. The AMon container and the Monlets that it hosts are embedded within an 

ActiveMQ message broker process. The container and its Monlets combine to provide a 

powerful and flexible monitoring system for ActiveMQ.  

 

A Monlet is an end-user defined component that comprises one or more conditional expressions 

and their corresponding actions; the Monlet invokes the actions if and when the conditional 

expressions are TRUE. You can also view the conditional expressions as predicate functions that 

accept one or more variables with the variables‟ values representing the runtime state of the 

message broker.  

 

In general, the conditions are designed to test the runtime or operational state of those objects 

that comprise the ActiveMQ message broker. Unlike ActiveMQ‟s default advisory system, the 

AMon container gives its Monlets direct access to all of the message broker‟s runtime object 

hierarchies.  The broker comprises many objects and their properties; therefore, there are also 

many conditions that can be defined and monitored. Here are just a couple of examples of the 

types of Monlets and the objects that they can monitor.  

 

1. Resource Monlet – one that tests whether a particular object, which represents a resource 

(e.g., memory, queue, etc.), has breached a threshold and invokes an action if the threshold is 

breached.  The action can be invoking a script, firing off an email, or raising an SNMP 

notification
1
.     

2. Audit Monlet – one that tests whether a message that is being routed through the broker 

meets some sort of condition (e.g., includes some user-defined property that has been 

assigned a particular value), and if the condition is met the contents of the message can be 

written to an audit log.   

 

AMon also allows Monlets to test conditions associated with the broker‟s hosting Java Virtual 

Machine (JVM). For example, a Monlet can test whether the number of active threads within the 

JVM or its memory heap size has breached a certain threshold.   

 

So unlike ActiveMQ‟s default Advisory system, AMon is a framework that: 

 

                                                           
1
  AMon provides the facilities that allow Monlets to generate SNMP notifications (a.k.a., traps) 
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 Allows end-users to define their own ActiveMQ broker-embedded monitoring agents 

(Monlets) 

 Gives the Monlets the ability to monitor all aspects of the ActiveMQ message broker‟s 

runtime state 

 Gives them the capability to perform a myriad of different actions in response to one or more 

conditional expressions evaluating to TRUE.  

 

AMon maintains a clean separation between the Monlets and the broker objects that they are 

monitoring. This separation is provided by a combination of the following: 

 

 Event messages that are published by the AMon plugin module, which is the AMon core 

component or engine. 

 AMon‟s default monitoring expression language (MEL) 

 The Apache Camel integration framework‟s routing Domain Specific Language (DSL).  

 

The above items all combine to make developing Monlets relatively straightforward and allows 

the AMon system as a whole to be extensible and flexible. The following three sections describe 

the above three items in more detail.  

 

Along with the Java programming language, the Monlet developer will need to have a basic 

understanding of Apache Camel and the Unified Expression Language (UEL).  

 

The AMon product package includes example “quick start” Monlets, which are designed to serve 

as examples and help developers ramp-up quickly on Monlet development.   

 

3.1.1 The AMon Plugin Module 

 

AMon‟s core component or engine is installed as an ActiveMQ message broker plugin; 

therefore, the AMon plugin is included in the message broker‟s main processing event chain. 

Inclusion in the processing event chain allows the AMon plugin to participate in the processing 

of events that occur within the ActiveMQ message broker. The AMon plugin‟s responsibility is 

not to process these events, but to publish event messages that correspond to each of these 

processing events. Other portions of the AMon framework deliver these event messages to the 

end-users‟ Monlets (much more on this later).  

 

The event messages that are published by the AMon plugin are similar to the ActiveMQ advisory 

system‟s event messages. That is, both message types are published in response to a processing 

event (e.g., connection created, connection removed, message arrived, message expired, etc.) that 

has occurred within the message broker. All together, there are 33 AMon broker processing 

events. Through an external properties file, the AMon plugin is dynamically configured to 

publish messages that correspond to all, none, or any subset of these events. Refer to Event 

Types as Constants for a complete listing of all the AMon event types.  

 

The AMon core also introduces two events that are not associated with broker processing events. 

The first event is generated whenever the ActiveMQ message broker writes a message to its log 

http://camel.apache.org/book-in-one-page.html
http://java.sun.com/javaee/5/docs/tutorial/doc/bnahq.html


Revision 2.0.0 ActiveMQ Monitor             
 

  

 Copyright 2009, Total Transaction Management    

 www.ttmsolutions.com 

 

4 

file (ACTIVEMQ_HOME/data/activemq.log) with a severity or priority of WARN or higher. 

The second event is generated via a configurable interval timer with a one millisecond 

resolution. These two events and the timer are further described in later sections of this guide.  

  

One important distinction between the AMon event message and ActiveMQ‟s advisory event 

message is that an AMon event message is an object whose reference is communicated to a 

Monlet via direct method invocation (DMI), whereas an advisory event message is designed to 

be transmitted as a JMS message across the network to remote ActiveMQ advisory clients.  This 

difference gives the AMon event message a distinct advantage, because it can and does provide 

direct references to the message broker‟s runtime object hierarchy.  Having direct references to 

the broker‟s object hierarchy provides an invaluable source of information from which many 

different conditions and thus types of Monlets can be defined.   

 

So, an AMon event message should be viewed as a portal or vehicle through which Monlets test 

the operational state of the broker at the time a processing event occurs.   

 

 

 
 

Figure 1 AMon Monlets and Event Message 

 

A Monlet is not precluded from sending JMS messages in response to one or more of its 

conditions returning TRUE; therefore, a Monlet can also act as a source of advisory messages 

destined to remote advisory or management clients. In other words, one action associated with a 

condition can be to send a JMS message to a remote management client. This is one way in 

which AMon complements ActiveMQ‟s advisory system.    
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3.1.2 The Monitoring Expression Language (MEL) 

 

The MEL is an extension of the Unified Expression Language (UEL), which is the expression 

language used within Java Server Pages (JSPs). The MEL, which was developed for the AMon 

project, is used by AMon end users to define their Monlets‟ conditional statements or predicates.  

 

AMon depends on a Java implementation of the UEL that is called the Java Unified Expression 

Language or JUEL for short. JUEL provides a lightweight and efficient Java implementation of 

the UEL. The JUEL leverages the JavaBeans  architecture/standard to access objects and their 

properties. Most if not all of ActiveMQ‟s runtime objects adhere to the JavaBeans standard, 

which makes them conducive to accessing from the JUEL.   

 

The JUEL extension that defines MEL is specifically designed to facilitate access to the message 

broker‟s objects. The MEL includes variables that are references to message broker objects, 

properties that can be used to dynamically configure Monlets, and utility methods.  

 

Recall that a Monlet subscribes to AMon event messages. By the time an event message has 

been delivered to a Monlet, the AMon framework will have created a MEL context for that event 

message. This MEL context includes the binding of MEL variables to the broker objects that are 

referenced via the event message.  The context also includes MEL-specific methods/functions 

and properties.  

  

http://java.sun.com/javaee/5/docs/tutorial/doc/bnahq.html
http://juel.sourceforge.net/
http://oreilly.com/catalog/javabeans/chapter/ch01.html
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Figure 2 The MEL Context and AMQ Object Hierarchies 

 

 

This is a very simple example of a MEL conditional expression (predicate) that is found within a 

Monlet.  

 

${destination.name = = „TEST.Q‟} 

   

The above expression is a condition that tests whether an ActiveMQ destination object has been 

assigned the name of „TEST.Q‟. Underneath the covers, AMon has assigned the „destination‟ 

variable a reference to an ActiveMQ Destination object.  That object‟s getName() method is then 

invoked to return the name of the Destination object. Any of the Destination object‟s „get‟ and 

„is‟ methods can be invoked in this fashion. Some of the Destination object‟s „get‟ methods can 

return other objects whose „get‟ and „is‟ methods also can be accessed. Thus the „destination‟ 

variable gives your Monlet access to various object hierarchies within the ActiveMQ message 

broker.  

 

As stated in the UEL web page, the UEL supports what is referred to as immediate and deferred 

evaluation of expressions. The MEL only supports immediate evaluation; therefore, only the 

“${}” syntax, and not the “#{}” syntax, can be used to define MEL conditional expressions.  
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Here‟s another MEL example that illustrates how you can traverse an object hierarchy tree.  

 

${destinationStatistics.messages.count >= 100} 

 

In the above MEL conditional expression, the destinationStatistics.getMessages().getCount() 

method invocation chain is invoked, which returns the number of messages that are currently 

residing in the Destination. In the example, the condition tests positive if the number of messages 

is equal to or exceeds 100.  

 

A MEL conditional expression is tested whenever the Monlet receives an AMon-published event 

message (more on this later).  

 

So in some respects, a Monlet is somewhat analogous to a JEE servlet. A servlet adheres to a 

well-defined API through which it receives HTTP request packets; the packets are dispatched to 

the servlet by the JEE web container. In similar fashion, a Monlet adheres to a well-defined 

interface, which in this case is in the form of a combination of Java domain specific language 

(DSL) and expression language. And it is through this interface that a Monlet receives and 

processes AMon event packets.  

 

3.1.3 Apache Camel  

 

Apache Camel is a powerful, Spring-based integration framework that is primarily used to 

implement the enterprise integration patterns defined in Gregor Hohpe and Bobby Woolf‟s book 

titled, “Enterprise Integration Patterns”.  One of the unique features of Camel is that it offers a 

„routing‟ Java Domain Specific Language (DSL) that is used by Camel end-users to:  

 

 Quickly implement all sorts of messaging patterns (filters, content-based routers, splitters, 

recipient lists, message enrichers, message transformers, etc) or “Routes” as they are also 

referred to.   

 Interface to a myriad of different endpoints/components that Camel supports. These 

components can also serve as potential Monlet „actions‟.  

 

The other nice thing about Camel‟s Java DSL is that it supports many different scripting and 

“expression” languages that are used for implementing filters and content based routers. Camel 

also allows you to very easily introduce your own language, which is what the AMon project has 

done with MEL.  

 

A Monlet is a Camel Route that utilizes a slightly extended version of Camel‟s routing Java 

DSL.  A Monlet is a subclass of the com.ttm.activemq.monitor.Monlet abstract super class, 

which in turn is a subclass of the Camel RouteBuilder super class.  The reason a Monlet directly 

extends the Monlet class and not Camel‟s RouteBuilder class will become apparent as you read 

through the guide.  

 

Camel‟s Java DSL is combined with the MEL to facilitate the quick development and 

deployment of Monlets. Monlet developers will have to learn the basics of Camel‟s routing Java 

http://camel.apache.org/book-in-one-page.html
http://www.enterpriseintegrationpatterns.com/
http://camel.apache.org/components.html
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DSL, as well as the JUEL and MEL. These are not difficult subjects. You are encouraged to visit 

the Apache Camel web site and/or download the PDF manual to learn more about Camel. This 

guide assumes that you have a basic understanding of Camel.  

 

So the combination of Camel‟s Java DSL and the MEL facilitate the quick development of 

Monlets. By leveraging Camel, Monlet developers can also quickly implement many different 

event message design patterns (e.g., content-based routers, recipient lists, delayers, etc.).  

 

Subsequent sections of this guide will show you how to combine the Camel DSL and the MEL to 

create Monlets.   

 

3.2 SNMP Agent and MIB 

AMon includes an embedded SNMP v2 Agent and accompanying Management Information 

Base (MIB).  These components allow ActiveMQ to be monitored by SNMP-capable 

management systems. The MIB, which is included in the AMon product archive file, lists and 

describes all the ActiveMQ attributes that can be monitored via AMon‟s SNMP agent. Please 

refer to the MIB for a complete description of all the attributes.    

 

AMon‟s SNMP agent also generates SNMP notifications (a.k.a., traps) and gives Monlets the 

capability to generate notifications via the Camel SNMP endpoint that AMon makes available to 

Monlets. See the SNMP Camel Endpoint section of the guide for examples of how Monlets can 

take advantage of this endpoint (component) to generate SNMP v2 notifications.  

 

The SNMP Agent section of the guide describes how to configure the agent.  The agent is 

dependent on JMX; therefore, setting the ActiveMQ broker‟s useJmx configuration attribute 

to “false” (see example below) will disable the agent. If you intend to use the SNMP agent, 

make sure useJmx is not set to “false”. The default setting for useJmx is “true”.   

 
 

<broker xmlns="http://activemq.apache.org/schema/core" useJmx="false" brokerName="mybroker"> 

     … 

</broker> 

 

  
 

4 The Anatomy of a Monlet  

In this section we‟ll take a closer look at the Monlet and its structure.  

 

4.1 The Basics 

To recap, a Monlet is a monitoring agent or component that: 

 

http://camel.apache.org/book-in-one-page.html
http://camel.apache.org/manual.html
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 Is defined and developed by the end-user 

 Adheres to the AMon container‟s MEL and Camel‟s Java DSL 

 Subscribes to AMon event messages 

 Monitors one or more ActiveMQ runtime objects 

 Invokes one or more actions as a result of monitoring the runtime objects 

 Is embedded within the ActiveMQ message broker 

 Is a Camel Route  

 

A Monlet is a Java object class that must extend the com.ttm.activemq.monitor.Monlet abstract 

super class. The one abstract method within the Monlet super class is the configure()
2
 method, 

and this method must be implemented by the Monlets that extend the super class.    

 

A Monlet runs within the same JVM as the message broker; therefore, the Monlet developer 

should use caution and not design resource intensive Monlets. In other words, the Monlet should 

not include actions that will overly compete with the broker for valuable resources.  

 

4.2 A Dummy Monlet 

This guide provides a lot of example Monlet code
3
 and we‟ll start things off with the simplest 

one of all, which depicts what amounts to a dummy Monlet, because it does absolutely nothing. 

However, it is a good starting point from which we can begin to describe the overall structure of 

a Monlet. 

 

package com.acme.monlets; 

 

import com.ttm.activemq.monitor.Monlet; 

import org.apache.camel.Processor; 

import org.apache.camel.Exchange; 

 

/** 

  * A very basic Monlet that does nothing 

  */ 

public class MyMonlet extends Monlet { 

 

  public void configure() { 

     // does nothing 

  } 

 

} 

 

The first thing to note is the three import statements, which are the minimum required import 

statements.  Next, note how you must extend the Monlet super class and implement the configure 

                                                           
2
The Monlet class extends Camel‟s RouteBuilder class, which is where the abstract configure() method is defined.  

3
 The sample code in this document is provided on an "as is" basis for illustrative purposes only and as such should 

not be considered production-ready code.  

http://camel.apache.org/maven/camel-core/apidocs/org/apache/camel/builder/RouteBuilder.html
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method, which in the above example does absolutely nothing. The Monlet‟s configure method is 

invoked when the Monlet first gets loaded by the corresponding Camel context‟s class loader. 

All of this occurs during the ActiveMQ message broker‟s initialization phase.  

 

Okay, so we‟ve built our first, albeit dummy, Monlet. Now let‟s start adding some intelligence 

one step at a time.  

 

4.3 Sending AMon Events to a Seda Queue 

In this next block of code, we‟ve added some intelligence to our dummy Monlet by adding this 

one line of Java DSL code, “monitor().to(“seda:router”)”.   

 

package com.acme.monlets; 

 

import com.ttm.activemq.monitor.Monlet; 

import org.apache.camel.Processor; 

import org.apache.camel.Exchange; 

 

/** 

  * A very basic Monlet that does nothing 

  */ 

public class MyMonlet extends Monlet { 

 

  public void configure() { 

 

    // Subscribe to AMon events, then pipe the events to a seda queue with the name, “router”.   

    // All Monlets subscribe to AMon events via the „monitor‟ DSL verb, which is an extension to  

    // the Camel DSL‟s repertoire of verbs.   

     monitor().to("seda:router"); 

  } 

} 

 

However, this one simple line of code does a lot so let‟s take it apart and describe everything it 

does for us. First, it introduces the Camel Java DSL and a couple of its verbs
4
 (“monitor” and 

“to”). The “monitor” verb is the extension to the DSL for the AMon product.  This verb is used 

by the Monlet to subscribe to and consume AMon event messages; therefore, you must have at 

least one Monlet in your Camel context invoke this verb in order to receive AMon event 

messages. Whether each and every Monlet subscribes to AMon event messages or only one 

subscribes, depends on how you design your Monlets within a Camel context (more on this 

later).  

 

The AMon event messages are delivered synchronously to the Monlet. In essence, the AMon 

container issues a call to the monitor verb‟s underlying logic to deliver the event message. It is 

important to also note that the AMon container is an extension of the ActiveMQ message broker. 

                                                           
4
  A DSL „verb‟ is a Java method that is statically imported by the Monlet super class.  
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This means that the AMon container / message broker has given execution control to the Monlet; 

therefore, it is critically important that the Monlet quickly return control to the calling AMon 

container. This is accomplished by the “to” verb, which redirects the event messages so they are 

asynchronously processed in a separate thread (or threads) of execution.  In this case, the “to” 

verb places the message in a “seda:” Camel endpoint component, which maps to a Java 

BlockingQueue (not to be confused with a JMS or ActiveMQ queue).  To learn why the term 

“seda” is used, click here.  In the example above, the seda blocking queue is called “router”. 

 

The “monitor().to(“seda:router”)” DSL statement implements our first messaging pattern, which is a 

simple pipe that consumes event messages from the AMon container and pipes them into a Java 

BlockingQueue called “router”.  You can assign any name to a seda queue (Camel endpoint) and 

the name “router” has been chosen, because as you‟ll soon see our next Monlet sample code will 

include a content-based router that processes the messages from the “seda:router” processing 

queue.  

 

Camel‟s Java DSL is expressed using what is referred to as the “fluent builder syntax”. With this 

syntax, you stack methods that are separated with the dot character. In the above example, the 

„monitor‟ verb represents the consumer that consumes event messages and then hands the 

messages to the producer, which is represented by the „to‟ verb. The producer places the 

messages in the seda blocking queue called, “router”. 

 

All the Monlets that you deploy to a particular Camel context can inter-communicate with one 

another via the seda queues. So for example, your Camel context may comprise a Monlet whose 

sole purpose is to consume AMon event messages and place those messages in a “seda:router” 

endpoint. A different Monlet within the same Camel context can then read messages from the 

“seda:router” endpoint for subsequent processing.  So the seda queues are a form of inter-Monlet 

communication mechanism for those Monlets that reside within the same Camel context.  

Monlets cannot communicate across Camel contexts.  

 

So you‟re now probably asking how we are going to process those messages that are being piped 

into the asynchronous blocking queue called, “router”.  To address that question, we have to 

define another messaging pattern that reads event messages from the “router” blocking queue. 

 

4.4 Using the MEL 

In this next block of Monlet source code we introduce the MEL and use it in conjunction with 

the DSL to construct a simple content-based router messaging pattern for our Monlet. This router 

reads messages from the “router” queue and routes the messages based on their event type. 

Figure 1 below is a pictorial representation of our content based router.  

http://camel.apache.org/seda.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/BlockingQueue.html
http://www.eecs.harvard.edu/~mdw/proj/seda/
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Figure 3 Content Based Router 

 

The router is also acting as a message filter, because it discards all AMon event messages types 

that it is has no interest in.  

 

Below is the source code for the corresponding Monlet. Note how the MEL is used to define and 

test a condition, which in this case tests the event message type. The MEL must always be used 

within a Camel „language‟ clause as follows. 

 

language(MEL, “${UEL expression}”) 

 

This Monlet also introduces you to the „from‟ verb, which is used by the Monlet to subscribe to 

and read from the seda queues. The „from‟ verb can be used to subscribe to a myriad of different 

Camel endpoint components; click here to see the full list. The AMon-specific „monitor‟ verb is 

an extension of the „from‟ verb. The „to‟ verb is used to send or produce messages to these same 

endpoint components. The code also introduces you to the „choice‟, „when‟, „otherwise‟, and 

„end‟ verbs, which allow you to construct a conditional statement much like an “if then else if” 

like conditional statement. To learn more about Camel and its Java DSL, visit the Apache Camel 

web site and and/or download Camel‟s PDF manual.   

 

The comments within the example Monlet source code provide additional information, so please 

make sure to read the comments.  

 

package com.acme.monlets; 

 

import com.ttm.activemq.monitor.Monlet; 

router queue

add_destination

add_connection

remove_connection

router and filter

http://activemq.apache.org/camel/components.html
http://camel.apache.org/book-in-one-page.html
http://camel.apache.org/manual.html
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import org.apache.camel.Processor; 

import org.apache.camel.Exchange; 

 

/** 

 *   This Monlet first consumes AMon events, then uses a content-based  router to filter  

  *  out all but 3 AMon  event types.   The „to‟, „from‟, „when‟, etc verbs are part of the Camel 

  *  DSL.  All Monlets must extend  the Monlet super class and implement the configure 

  *  method. 

  */ 

public class MyMonlet extends Monlet { 

 

    public void configure() { 

     

    // Subscribe to AMon events, then pipe the events to the Monlets content-based  router.  

    // All Monlets subscribe to AMon events via the „monitor‟ DSL verb, which is an  

    // extension to the Camel  DSL‟s repertoire of verbs.   

 

    monitor().to("seda:router");        

     

    // This is the Monlet‟s content based router that routes to processors based on AMon  

    // event types. Note how this particular router only allows a subset of AMon event types to  

    //  be passed on to the subsequent processors. The block of code that comprises the router 

    //  illustrates the use of Camel‟s routing DSL in combination with the MEL. 

    // The „from‟, „when‟, „to‟, „otherwise‟, „language‟, and „end‟ verbs pertain to the DSL,  

    //  while the „eventType == …‟ strings are MEL expressions.  

   

    from("seda:router"). 

     choice(). 

       when().language(MEL,"${eventType == ADD_DESTINATION}"). 

            to("seda:add_destination"). 

       when().language(MEL,"${eventType == ADD_CONNECTION}"). 

            to("seda:add_connection").   

       when().language(MEL,"${eventType == REMOVE_CONNECTION}"). 

            to("seda:remove_connection").         

       otherwise(). 

            to("seda:ignore"). 

     end(); 

     

    // The „otherwise‟ verb is optional. If you leave it out, all unmatched messages will be 

    // dropped.  

 

    // This processor will be given the add destination event types 

    from("seda:add_destination").                

      process(new Processor() { 

       public void process(Exchange exchange) throws Exception { 

           // do some sort of processing here 

        } 
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    });  

     

    // This processor will be given the add connection event types 

    from("seda:add_connection").             

      process(new Processor() { 

       public void process(Exchange exchange) throws Exception { 

           // do some sort of processing here        

       } 

    });  

     

    // This processor will be given the remove connection event types 

    from("seda:remove_connection").             

      process(new Processor() { 

       public void process(Exchange exchange) throws Exception { 

            // do some sort of processing here            

       } 

    });  

     

    // All other event types can be put in the bit bucket. 

    from("seda:ignore");  

            

  }      

} 
 

 

In the above example, all the logic is contained within one Monlet. However, you can split the 

logic across multiple Monlets. For example, one Monlet can be responsible for implementing the 

content-based router logic while other Monlets can be responsible for subscribing to their 

respective seda queues. The following snippet of code depicts a Monlet whose sole purpose is to 

process messages that arrive at its seda queue. 

 

package com.acme.monlets; 

 

import com.ttm.activemq.monitor.Monlet; 

import org.apache.camel.Processor; 

import org.apache.camel.Exchange; 

 

/* 

 *  This is a Monlet that reads from a seda queue and relies on another Monlet w/in the  

 *  same Camel context to  subscribe to AMon event messages and place those messages 

  *  in its seda queue. 

 */ 

public class AddDestinationMonlet extends Monlet { 

 

    public void configure() {     

     

     from("seda:mySedaQueue ").                
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       process(new Processor() { 

        public void process(Exchange exchange) throws Exception { 

           // do some sort of processing here 

        } 

    });  

  } 

} 

 

Take special note that a „from‟ verb that reads from a seda queue will run within its own 

dedicated thread of execution; therefore, to prevent too much thread proliferation, make wise 

use of statements like „from(seda:…)‟.   

 

One technique for cutting down on the „from(seda:…)‟ verb clause is to use a „choice‟ without 

adding an „otherwise‟; therefore, any unmatched exchanges will be dropped by default. If you 

elect to not use an „otherwise‟, you may notice the following warning message being written to 

the console when the broker starts. 

  

WARN  ChoiceType  - No otherwise clause was specified for a choice block -- any unmatched 

exchanges will be dropped 

 

Another technique is to place the processing logic within the „when‟ clause. For example, 

 

… 

  

from("seda:mySedaQueue"). 

 

  choice(). 

       

      // The processor within this „when‟ clause will be invoked if the event message type 

      // is of type MSG_DELIVERED or MSG_CONSUMED 

      when().language(MEL,"${eventType == MSG_DELIVERED || " + 

      "eventType == MSG_CONSUMED }"). 

         process(new Processor() { 

           public void process(Exchange exchange) throws Exception { 

           // do some processing here… 

       }}). 

 

      // The processor within this „when‟ clause will be invoked if the event message type 

      // is of type ADD_CONNECTION 

       when().language(MEL,"${eventType == ADD_CONNECTION}"). 

         process(new Processor() { 

           public void process(Exchange exchange) throws Exception { 

           // do some processing here… 

       }}). 

 

  end(); 
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… 

 

 

If you prefer to have an exception for an unmatched exchange, you can add a throwFault to the 

otherwise. For example 

 

...otherwise().throwFault("No matching when clause found on choice block"); 

 

4.5 Monitoring the Size of an ActiveMQ Queue 

This next Monlet takes things a lot further by actually monitoring a broker resource, but let‟s 

first describe how the Monlet works and what it monitors.  

 

1. It will monitor the „size‟ attribute for a queue called, “TEST.Q”.   

2. It monitors the queue size each time a message is added to or removed from the queue. 

3. A high and low water mark have been specified for the queue size attribute. 

4. It will invoke an action (processor) only if: 

a. the high-water mark is breached w/out a previous breach occurring at the high-water 

mark  

b. the lower-water mark is breached AND there has been a  previous breach of the high-

water mark. When this condition occurs the monitor is reset. 

 

In the time diagram below, the monitor will invoke the processor (action) at T1 and T2. The 

monitor‟s state will also be reset at T2.  

 

 
 

H 

QueueSize 

Time 

L 

L – Low water mark 

H – High water mark  

T1 T2 



Revision 2.0.0 ActiveMQ Monitor             
 

  

 Copyright 2009, Total Transaction Management    

 www.ttmsolutions.com 

 

17 

In the time diagram below, the monitor does not invoke any functions, because the high-water 

mark was never breached.  

 

 
 

 

What follows are a couple of source code examples for the previously described Monlet. The 

first example illustrates how the Monlet utilizes a series of filters and content-based routers. 

However, this series of filters and routers results in several „from‟ verbs, so the second example 

illustrates how you can collapse everything into one „from‟ verb.  

 

 

package com.acme.monlets; 

 

import com.ttm.activemq.monitor.Monlet; 

import org.apache.camel.Processor; 

import org.apache.camel.Exchange; 

/** 

 * This Monlet monitors a queue called “TEST.Q” and invokes actions whenever the number of  

 * pending messages in the queue enters a high or low water mark.  

 */ 

public class Monlet4 extends Monlet { 

 

  // Used to maintain state  

  private boolean crossedIntoHighWaterMark = false;   

 

  public void configure() { 

 

    // Capture all AMon event message types. All Monlets subscribe to AMon events via the 

    // „monitor‟ DSL  verb, which is an extension to the Camel DSL‟s repertoire of verbs.   

 

H 

QueueSize 

Time 

L 

L – Low water mark 

H – High water mark  
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    monitor().to("seda:check_event_type"); 

 

    // This Monlet is only interested in two events. Those being when the broker has  

    //  received a message from a producer or when the broker has dispatched a message to a 

    // consumer. All other event messages will not contain the information that this Monlet  

    // is interested in.  

 

    from("seda:check_event_type").choice(). 

      when().language(MEL,"${eventType == MSG_DELIVERED || " + 

                                                       "eventType == MSG_CONSUMED}"). 

           to("seda:check_q_name").       

      end(); // the end for the when clause 

 

 

    //  Okay, we‟ve now filtered out all message types except the two we‟re interested in.  

    //  Now lets filter out all message types that are not associated with the queue that  

    //  we‟re interested in. In other words, lets capture event messages associated only with  

    //  the queue called 'TEST.Q'. Note that only event types of the type that we‟re interested  

    //  in has the „destination‟ variable mapped to the broker‟s destination HashMap.  

    from("seda:check_q_name").choice(). 

      when().language(MEL,"${destination.name == 'TEST.Q'}"). 

         to("seda:check_queue_size"). 

      end(); // the end for the when clause 

 

    //  Lets now check the queue‟s size and determine if the queue is in the high or low water 

    //  mark range. We don‟t care if it is in between the two ranges.     

 

    from("seda:check_queue_size"). choice(). 

      // if we're at or above the high water mark, route to the 'high' seda q 

      when().language(MEL,"${destination.destinationStatistics.messages.count >= 100}"). 

         to("seda:high"). 

      // if we're in the low water mark range, route to the „low‟ seda queue 

      when().language(MEL,"${destination.destinationStatistics.messages.count <= 50}"). 

         to("seda:low"). 

        // else it is in between the two and we don‟t care       

      end(); // the end for the when clause 

     

    // The queue size is in the high water mark - if we had not previously crossed it send an  

    //  alert and set the high water mark flag 

    from("seda:high").process(new Processor() {        

       public void process(Exchange exchange) throws Exception { 

         System.out.println("In the high water mark"); 

         if(!crossedIntoHighWaterMark){ 

           crossedIntoHighWaterMark = true; 

           // we've crossed into the high water so invoke an action, which in this case 

           // simply prints out a message 

           System.out.println("WARNING: high water mark has been breached"); 
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         } 

     }}); //end this Monlet route 

 

     // we're in the low water mark 

     from("seda:low").process(new Processor() { 

       public void process(Exchange exchange) throws Exception { 

         // reset the highwater flag since we've crossed back into low water mark and  

         // invoke some action, , which in this case is to simply print out a message 

         if(crossedIntoHighWaterMark){ 

           crossedIntoHighWaterMark = false; 

           System.out.println("Low water mark has been breached"); 

         } 

 

     }}); //end this Monlet route 

     

  } 

 

} 

 

 

 

This is the shortened version of Monlet4, note how all the logic is now contained within one 

from verb or clause.  

 

package com.acme.monlets; 

 

import com.ttm.activemq.monitor.Monlet; 

import org.apache.camel.Processor; 

import org.apache.camel.Exchange; 

 

public class Monlet4 extends Monlet { 

     

  private boolean crossedIntoHighWaterMark = false; 

 

  @Override 

  public void configure() { 

 

    // Capture AMon event message types 

    monitor().to("seda:Monlet4"); 

 

    // This Monlet is only interested when a message has arrived from a 

    // producer or when the broker has dispatched a message to a consumer. 

    from("seda:Monlet4"). 

 

      choice(). 

 

        when().language(MEL,"${(eventType == MSG_CONSUMED || " + 
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                "eventType == MSG_DELIVERED) && destination.name == 'TEST.Q' &&" + 

                "destination.destinationStatistics.messages.count >= 100}"). 

          process(new Processor() { 

            // we're in the high water mark - if we had not previously crossed it 

            // send an alert and set the high water mark flag 

            public void process(Exchange exchange) throws Exception { 

               System.out.println("In the high water mark area"); 

               if (!crossedIntoHighWaterMark) { 

                  crossedIntoHighWaterMark = true; 

                  // we've crossed into the high water so invoke an action, which in this case 

                  // simply prints out a message  

                  System.out.println("WARNING - High water mark has been breached"); 

               } 

            } 

           }). 

 

        when().language(MEL,"${(eventType == MSG_CONSUMED || " + 

                "eventType == MSG_DELIVERED) && destination.name == 'TEST.Q' &&" + 

                "destination.destinationStatistics.messages.count <= 50}"). 

           process(new Processor() { 

            // we're in the low water mark 

            public void process(Exchange exchange) throws Exception { 

                // reset the highwater flag since we've crossed back into low water mark and  

                // invoke some action, , which in this case is to simply print out a message 

                if (crossedIntoHighWaterMark) { 

                    crossedIntoHighWaterMark = false; 

                    System.out.println("Low water mark has been breached"); 

                } 

            } 

        }). 

 

      end(); 

 

    } 

} 

 

 

In the previous two examples, note the use of the Processor object‟s „process‟ method.  It is in 

this method that some form of message processing takes place like transforming the event 

message to an email message, setting a header for a subsequent filter, or setting an Exchange 

property, etc. Here‟s a snippet from a simple Monlet that serves as a further example; please 

refer to the comments for additional information. 

 

… 
 

/** 

     Let‟s assume that a condition above has tested positive and that the message has been sent  
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      to this seda queue for processing.  

**/ 

 

from("seda:low").process(new Processor() { 

 

        // This is where we do the message processing like transform the message (if necessary) 

        // prior to sending it to the next Camel endpoint (e.g., smtp, snmp, file, etc).  The  

        // Exchange object is always passed from one endpoint to the next in the processing 

        // pipeline.   

        public void process(Exchange exchange) throws Exception { 

 

            // Save the AMon BaseEvent object (event message)  that arrived in case we want  

            // to use it for processing  

            BaseEvent baseEvent =  (BaseEvent) = exchange.getIn().getBody(); 

 

            // Do some processing here… 

 

           // Transform the body prior to sending it to the next endpoint. In this case, we‟re  

           // simply transforming the BaseEvent object to a simple String object.  

           exchange.getIn().setBody("Transformed body"); 

 

           // You can also set message headers for the next endpoints to receive the Exchange             

           exchange.getIn().setHeader(“key”, “value”); 

 

          // The Exchange  object also allows you to set and get Exchange properties.  

          // These properties, as well as message headers, can then be referenced by the next  

          // endpoint in the pipeline. Here are some examples. 

          Map exchangeProps = exchange.getProperties(); 

          String someProp      = exchange.getProperty(“key”); 

          exchange.setProperty("key", "value"); 

 

       } 

     

    // After processing and transforming the message, send it to the next  

    // Camel endpoint. Note that this is optional and that the Monlet may have terminated  

   //  with the previous process method.  

    }).to("some other endpoint"); 

 

… 

 

 

In the above example, the action is to process the message, transform the message, and then send 

it to the next endpoint in the processing pipeline. The next endpoint can be any one of Camel‟s 

multitude of supported endpoints (e.g., smtp, ibatis, file, etc.).   

 

http://camel.apache.org/maven/camel-core/apidocs/org/apache/camel/Exchange.html
http://camel.apache.org/maven/camel-core/apidocs/org/apache/camel/Exchange.html
http://camel.apache.org/maven/camel-core/apidocs/org/apache/camel/Exchange.html
http://camel.apache.org/maven/camel-core/apidocs/org/apache/camel/Exchange.html
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4.6 A Monlet that Sends SNMP Notifications 

Of special note is the SNMP endpoint that AMon provides and is described in the SNMP Camel 

Endpoint section of the guide. This next, shortened version of Monlet4, illustrates how a 

message is sent to AMon‟s SNMP Camel endpoint whenever one of the queue‟s thresholds has 

been breached. When the SNMP endpoint is sent a message, it will generate a SNMP notification 

(trap). Also note the reliance on AMon‟s external Properties File to make the Monlet 

dynamically configurable. Please refer to the comments for additional information.  

 

package com.acme.monlets; 

 

import com.ttm.activemq.monitor.Monlet; 

import org.apache.camel.Processor; 

import org.apache.camel.Exchange; 

 

public class Monlet4 extends Monlet { 

 

    private boolean crossedIntoHighWaterMark = false; 

 

    @Override 

    public void configure() { 

 

        // Capture AMon event message types and forward them to the seda queue called,  

        // “Monlet4”. 

        monitor().to("seda:Monlet4”); 

 

        /* ********** 

         This Monlet is only interested when a message has arrived from a  producer or when the  

         broker has dispatched a message to a consumer. It is also relying on the following  

         external properties: 

          

         monlet4QName – This property specifies the name of the queue to monitor 

         maxThreshold – This property specifies the maximum threshold for the queue 

         minThreshold – This property specifies the minimum threshold for the queue 

 

         Values for the above properties can be dynamically assigned. In other words, 

         you do not have to stop and start the broker to change their values. See the  

         Properties File section for more information on AMon properties.  

 

        ********** */ 

        from("seda: Monlet4"). 

 

         choice().           

 

           when().language(MEL, "${(eventType == MSG_CONSUMED || " + 

                "eventType == MSG_DELIVERED) && destination.name == " + 

                "props.monlet4QName && " + 
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                "destination.destinationStatistics.messages.count >= " + 

                "props.maxThreshold}"). 

                     process(new Processor() { 

                      // we're in the high water mark - if we had not previously crossed it 

                      // send a SNMP trap and set the high water mark flag 

                      public void process(Exchange exchange) throws Exception {                    

                     if (!crossedIntoHighWaterMark) { 

                       crossedIntoHighWaterMark = true; 

                      // Let the SNMP producer know to send the trap 

                      exchange.setProperty("sendSnmpTrap", "true"); 

                      Monlet.setSnmpTrapMonitorPropertyName(exchange,"messages.count");                     

                      Monlet.setSnmpTrapMonitorMessage(exchange, 

                        "WARNING high water mark was breached");  

                      // forward on the BaseEvent object 

                      exchange.getOut().setBody(exchange.getIn().getBody());                    

                   } 

                } 

               }).to("seda: Monlet4.check4trap"). 

 

           when().language(MEL, "${(eventType == MSG_CONSUMED || " + 

                "eventType == MSG_DELIVERED) && destination.name == " + 

                "props.monlet4QName && " + 

                "destination.destinationStatistics.messages.count <= " + 

                "props.minThreshold}"). 

                process(new Processor() { 

                 // we're in the low water mark 

                 public void process(Exchange exchange) throws Exception {                    

                   // reset the highwater flag since we've crossed back into low water 

                    

                    if (crossedIntoHighWaterMark) { 

                      

                     crossedIntoHighWaterMark = false; 

                     // Let the SNMP producer know to send the trap                       

                    exchange.setProperty("sendSnmpTrap", "true"); 

 

                    // These two statics methods are used setting notification attributes.  

                    // These methods are described in the SNMP Camel Endpoint section  

                    // of the guide.  

                    Monlet.setSnmpTrapMonitorPropertyName(exchange,"messages.count"); 

                    Monlet.setSnmpTrapMonitorMessage(exchange, 

                          "The low water mark was breached"); 

                     

                    // forward on the BaseEvent object 

                    exchange.getOut().setBody(exchange.getIn().getBody());                    

 

                   } 

                 } 



Revision 2.0.0 ActiveMQ Monitor             
 

  

 Copyright 2009, Total Transaction Management    

 www.ttmsolutions.com 

 

24 

        }).to("seda: Monlet4.check4trap"). 

 

      end(); 

 

      //  Via the use of a „filter‟,  this seda consumer is checking to see if the message is to  

      //  be forwarded on to the SNMP endpoint, which raises a SNMP notification (trap) 

       

      from("seda: Monlet4.check4trap").filter(property("sendSnmpTrap"). 

             isEqualTo("true")).to("snmp:trap"); 

 

    } 

} 

 

 

 

4.7 Compiling Your Monlets 

Compiling Monlets requires use of JDK 1.5 or 1.6. If using the NetBeans IDE, also make sure 

the “Source/Binary Format” is also set to 1.5 or 1.6. 

 

The following libraries (jar files) need to be configured into the project (if using an IDE and/or 

Maven), or must be present in the CLASSPATH (if compiling using javac from the command 

line): 

 
amon-2.0.x jar  

camel-core-2.0.x.jar  

jaxb-api-2.1.jar  

 

 

4.8 A Warning 

Do not use the Camel mock endpoint in your Monlets. Doing so will result in memory leakage.   

 

5 The MEL  

The MEL is an AMon-specific extension of the UEL or JUEL.  In this section, we describe the 

variables, constants, and methods that define the MEL.  

By the time a Monlet receives an AMon event message, a MEL context has been created for that 

message. This MEL context binds variables to the event message‟s instance properties, supplies 

constants, and supplies methods.  All of these variables, constants, and methods can then be 

referenced within the Monlet‟s MEL conditional expression or predicate. Let‟s go back to one of 

the previous example Monlets that implemented the following content-based router message 

pattern.  

http://camel.apache.org/mock.html
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 from("seda:router"). 

  choice(). 

      when().language(MEL,"${eventType == ADD_DESTINATION}"). 

            to("seda:add_destination"). 

      when().language(MEL,"${eventType == ADD_CONNECTION}"). 

            to("seda:add_connection").   

      when().language(MEL,"${eventType == REMOVE_CONNECTION}"). 

            to("seda:remove_connection").         

 end(); 

And in particular, let‟s take a closer look at this statement.  

 

language(MEL,"${eventType == ADD_DESTINATION}"). 

A Monlet uses the „language‟ Camel DSL clause to define a conditional expression. The MEL 

string constant tells Camel to use the MEL language and everything inside the “${}” string 

defines the MEL conditional expression. In the above examples, the „eventType‟ is a variable 

that is assigned the value of the message‟s eventType property and ADD_DESTINATION is a 

constant that has been mapped to the corresponding event message type.   

 

5.1 Event Types as Constants 

The table below lists and briefly describes all the events that can be reported to the Monlet via 

the eventType variable. The event‟s type (e.g., ADD_CONNECTION) is also a MEL constant 

that is used by Monlets to test for that particular event type. Examples of these constants and 

how they are referenced within a MEL expression were provided in the previous sections.  

Please note that, by default, AMon will not generate any event messages. You must decide what 

event types you‟d like your Monlets to be informed of and then enable the publishing of the 

corresponding event messages. Use caution when choosing what events to enable, because 

enabling too many or all events may result in an overall performance degradation. See 

Configuring AMon  for details on how to enable and disable event publishing.  

 

Event  Type   Description  

ADD_BROKER A remote Broker connects to this broker 

ADD_CONNECTION 
An ActiveMQ client (consumer or producer) is establishing a 

connection with this broker. 

ADD_CONSUMER A consumer client is being added to this broker 

ADD_DESTINATION 

A destination is being added to this broker. Usually, this event 

occurs as a side-effect of sending a message to a destination that 

does not exist yet. 

ADD_PRODUCER A producer client is being added to this broker 
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ADD_SESSION A JMS session has been established with this broker 

BEGIN_TRX A transaction is beginning  

COMMIT_TRX A transaction is being committed  

FAST_PRODUCER The broker has detected a fast producer.  

FORGET_TRX A transaction is being forgotten 

LOG_ENTRY 

A log4j message has been written to the ActiveMQ log file.  

Please see Log4J Monitoring for more details on how to set up 

and configure AMon to publish this event.   

MASTER_BROKER This broker, who was previously a slave, is now a master broker.  

MSG_ACK Acknowledge the receipt of a message by a client 

MSG_CONSUMED 

A message in a queue has been consumed by a consumer client. 

Note that consuming a message from a topic does not generate 

this event type.   

MSG_DELIVERED A message has been delivered to this broker.  

MSG_DISCARDED 

Called when a message is discarded (e.g. running low on 

memory). This will happen only if the policy is enabled (e.g. non 

durable topics) 

MSG_EXPIRED A message has expired 

POST_DISPATCH A message has been dispatched to a consumer 

PRE_DISPATCH A message is about to be dispatched to a consumer 

PREPARE_TRX A transaction is being prepared for commit 

REMOVE_BROKER A remote broker disconnects from this broker 

REMOVE_CONNECTION A client has disconnected from this broker. 

REMOVE_CONSUMER A consumer client is being removed from this broker 

REMOVE_DESTINATION A destination is being removed from this broker.  

REMOVE_PRODUCER A producer client is being removed from this broker.  

REMOVE_SESSION A JMS session has been removed from this broker 

REMOVE_SUBSCRIPTION A durable subscription is being removed from this broker.  

ROLLBACK_TRX A transaction is being rolled back 

SEND_TO_DLQ A message is being sent to the dead letter queue 

SLOW_CONSUMER The broker has detected a slow consumer 

TIMER_INTERVAL 
AMon‟s configurable interval event timer has expired (see The 

Interval Timer). 

USAGE_FULL Called when a broker resource reaches a limit 

Table 1 AMon Event Types 

5.2 Variables 

 

In the previous examples, we saw how the value of the „eventType‟ String variable is tested 

against a String constant. However, in some cases the MEL defines variables whose 

corresponding data types are ActiveMQ objects (i.e., the variables are object references). When a 

variable‟s data type is an ActiveMQ object, your Monlet can invoke all the standard JavaBean 
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„get‟ and „is‟ methods associated with that particular object; this allows your Monlet to acquire 

the values associated with that object‟s instance properties. In some cases, one or more of the 

object‟s „get‟ methods will return a reference to another ActiveMQ object, whose instance 

property values you then access through its „get‟ and „is‟ methods. This is how you can walk 

through the message broker‟s object hierarchy tree to acquire information regarding the broker‟s 

operational or runtime state.  

 

 
 

For convenience, the MEL provides you with some variables that reference an ActiveMQ object 

that is more than one level deep within the object tree. As you‟ll see later in the section, one such 

example is the „destinationStatistics‟ variable.   

 

The table below lists all the variables that the MEL presents to the Monlet developer and also 

provides examples of how to reference the „get‟ and „is‟ object methods. You‟ll note that the 

broker, brokerService, brokerView, eventType, props, and vm variables are valid for all event 

types, while the others are valid only for a subset of all the event types. When a MEL variable is 

an object reference, you will be referred to that object‟s JavaDoc URL for a complete list of that 

object‟s „get‟ and „is‟ methods. An index to all ActiveMQ classes can be found here.   

MEL Variables That Are 

Object References

Message Broker Objects

http://activemq.apache.org/maven/activemq-core/apidocs/allclasses-noframe.html
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Variable Name  Description  

activeMQDestination 

This variable is a reference to the ActiveMQDestination object and is 

only valid for the following event types: ADD_DESTINATION and 

REMOVE_DESTINATION.   

Usually, the ADD_DESTINATION event is invoked as a side-

effect of sending a message to a destination that does not exist yet. 

Here are a couple of example use cases for this object.  

 

Is the destination a topic?    

 
language(MEL,"${amqDestination.topic}") 

 

Is the destination temporary?    

 
language(MEL,"${amqDestination.temporary}") 

 

Is it a composite destination?    

 
language(MEL,"${amqDestination.composite}") 

broker 

This variable is a reference to an AMon specific object that both 

implements and extends the ActiveMQ Broker interface; the 

variable is valid for all event types.  

 

Example usage: 

 

Is the broker‟s name set to „mybroker‟? 

 
language(MEL,"${broker.brokerName == „mybroker‟}") 

 

Note how the string literal „mybroker‟ must be surrounded by single 

quotes. 

brokerInfo 

This variable is a reference to the BrokerInfo object, and it is only 

valid for the ADD_BROKER and REMOVE_BROKER event 

types.  

brokerService 
This variable is a reference to the BrokerService  object, and it is 

valid for all event types.   

brokerView 

This variable is a reference to the BrokerView object and is valid for 

all event types. The BrokerView object implements the 

BrokerViewMBean interface. Through this variable, your Monlet can 

access all the „get‟ and „is‟ methods associated with this interface.   

Example usage: 

 

http://activemq.apache.org/maven/activemq-core/apidocs/org/apache/activemq/command/ActiveMQDestination.html
http://activemq.apache.org/maven/activemq-core/apidocs/org/apache/activemq/broker/Broker.html
http://activemq.apache.org/maven/activemq-core/apidocs/org/apache/activemq/command/BrokerInfo.html
http://activemq.apache.org/maven/activemq-core/apidocs/org/apache/activemq/broker/BrokerService.html
http://activemq.apache.org/maven/activemq-core/apidocs/org/apache/activemq/broker/jmx/BrokerView.html
http://activemq.apache.org/maven/activemq-core/apidocs/org/apache/activemq/broker/jmx/BrokerViewMBean.html
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Has the total message dequeue count for this broker exceeded 

60000? 

 

   language(MEL,"${brokerView.totalDequeueCount  > 60000}") 

 

Is this broker„s name set to „mybroker‟ and is it a slave broker? 

     

   language(MEL, 

     "${brokerView.brokerName == „mybroker‟ && 

     brokerView.slave}") 

connection 

This variable is a reference to the Connection object, which is valid 

for the following event types: ADD_BROKER and 

REMOVE_BROKER 

 

 

 

 

 

 

 

 

 

connectionContext 

This variable is a reference to the ConnectionContext object, which is 

valid for all event types except the following:  ADD_BROKER, 

REMOVE_BROKER, MASTER_BROKER, LOG_ENTRY, and 

TIMER_INTERVAL 

 

Here is an example use case.  

 

Does the connection pertain to an IP address of „123.45.67.89‟? 

   
language(MEL,"${connectionContext.connection.remoteAddress ==  

„123.45.67.89‟}")   
 

From the connectionContext object, you can also get a reference to 

the Connection object and it‟s ConnectionStatistics (see next 

variable). From the connectionContext you can also get a reference 

to the Connector object and its ConnectorStatistics.  

 

So what‟s the difference between a Connection and Connector 

object? A Connector is an object that creates and manages client 

Connections that communicate to the Broker. One example of a 

Connector is the „Transport Connector‟, which you may have seen 

referenced in the ActiveMQ message broker‟s XML configuration 

file as follows.  

 

<transportConnectors> 

 <transportConnector name="openwire" uri="tcp://localhost:61616" 

    discoveryUri="multicast://default"/> 

</transportConnectors> 

 

Note that a Connector is capable of listening for and accepting 

Connection requests from both clients and other brokers.  

connectionInfo 
This variable is a reference to the ConnectionInfo object and it is 

only valid for the following event types: ADD_CONNECTION and 

http://activemq.apache.org/maven/activemq-core/apidocs/org/apache/activemq/broker/Connection.html
http://activemq.apache.org/maven/activemq-core/apidocs/org/apache/activemq/broker/ConnectionContext.html
http://activemq.apache.org/maven/activemq-core/apidocs/org/apache/activemq/command/ConnectionInfo.html
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REMOVE_CONNECTION. Please note that the Connection that 

this ConnectionInfo object pertains to can be associated with either 

a client or another broker.  

 

Here are some example use cases.  

 

Does the connection pertain to a user by the name of „joe‟? 

   
   language(MEL,"${connectionInfo.userName ==  „joe‟}") 

 

Is the client id associated with this connection set to „client123‟? 

   
language(MEL,"${connectionInfo.connectionId.value ==  „client123‟}") 

 

Is the value of the corresponding connection id equal to „foo‟? 

   
language(MEL,"${connectionInfo.connectionId.value ==  „foo‟}") 

connectionStatistics 

This variable is a reference to the ConnectionStatistics object, which 

is valid for all event types except the LOG_ENTRY, 

PRE_DISPATCH, POST_DISPATCH, MASTER_BROKER, 

MSG_EXPIRED, SEND_TO_DLQ, SLOW_CONSUMER, and 

TIMER_INTERVAL events. 

 

The reference to the ConnectionStatistics objects is acquired from 

the ConnectionContext object.   

 

Example usage: 

 

Have there been more than 1000 messages dequeued via this 

connection?  

 
language(MEL,"${connectionStatistics.dequeues.count > 1000}") 

 

This is a convenience variable, because it can be referred to instead 

of having to refer to the connection or connectionContext variables.  

This is an example of a variable that is a direct reference to a couple 

of layers down an object hierarchy. For example, if you used the 

connectionContext variable (see above) to acquire the 

connectionStatistics, you‟d end up with the following MEL string, 

which is much longer than the one above.   

 
  language(MEL, 

  "${connectionContext.connection.statistics.dequeues.count > 1000}") 

connectorStatistics 

This variable is a reference to the ConnectorStatistics object, which is 

valid for all event types except the LOG_ENTRY, 

PRE_DISPATCH, POST_DISPATCH, MASTER_BROKER, 

MSG_EXPIRED, SEND_TO_DLQ, SLOW_CONSUMER, and 

http://activemq.apache.org/maven/activemq-core/apidocs/org/apache/activemq/broker/region/ConnectionStatistics.html
http://activemq.apache.org/maven/activemq-core/apidocs/org/apache/activemq/broker/region/ConnectorStatistics.html
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TIMER_INTERVAL events. 

consumerBrokerExchange 
This variable is a reference to the ConsumerBrokerExchange object, 

which is only valid for the MSG_ACK event type. 

consumerInfo 

This variable is a reference to the ConsumerInfo object.  

 

This variable is only valid for the SLOW_CONSUMER, 

ADD_CONSUMER and REMOVE_CONSUMER event types.   

destination 

This variable is a reference to the Destination object associated with 

the event. It is only valid for the following event types:  

MSG_EXPIRED, MSG_CONSUMED, MSG_DELIVERED, 

MSG_DISCARDED, SEND_TO_DLQ, SLOW_CONSUMER and 

USAGE_FULL.  

Example usage: 

 

Is the destination associated with this event called „TEST.Q‟ ? 

 

   language(MEL,"${destination.name  == „TEST.Q‟}") 

destinationStatistics 

This variable is a reference to the DestinationStatistics object and it is 

only valid for the following event types: MSG_EXPIRED, 

MSG_CONSUMED, MSG_DELIVERED, MSG_DISCARDED, 

SEND_TO_DLQ, SLOW_CONSUMER, and USAGE_FULL. 

 

From the DestinationStatistics object you can get statistics data for 

the event‟s corresponding destination.  

 
language(MEL,"${destinationStatistics.dequeues.count > 100}") 

language(MEL,"${destinationStatistics.enqueues.count > 100}") 

 language(MEL,"${destinationStatistics.producers.count == 10}") 

language(MEL,"${destinationStatistics.consumers.count == 0}") 

 

This is a convenience variable, because it can be directly referred to 

instead of having to acquire it via the previously described 

„destination‟ variable.  This is an example of a variable that is a 

direct reference to an object that is a couple of layers into an object 

hierarchy. For example, if you used the destination variable (see 

above) to acquire the destinationStatistics, you‟d end up with the 

following MEL string, which is a bit longer than the one above.   

 
   language(MEL, 

     "${destination.destinationStatistics.dequeues.count > 1000}") 

eventType 

This String variable will contain the value of the event message 

type. It is used by Monlets to determine the event message type. See 

the events table for a complete list of all event types.  In the example 

below, the MEL conditional expression is checking for an event 

message of type of ADD_CONNECTION. 
 

http://activemq.apache.org/maven/activemq-core/apidocs/org/apache/activemq/broker/ConsumerBrokerExchange.html
http://activemq.apache.org/maven/activemq-core/apidocs/org/apache/activemq/command/ConsumerInfo.html
http://activemq.apache.org/maven/activemq-core/apidocs/org/apache/activemq/broker/region/Destination.html
http://activemq.apache.org/maven/activemq-core/apidocs/org/apache/activemq/broker/region/DestinationStatistics.html
http://java.sun.com/javase/6/docs/api/java/lang/String.html
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language(MEL,"${eventType == ADD_CONNECTION }") 

 

The ADD_CONNECTION is a constant; therefore, it does not have 

to be surrounded by single quotes. However, string literals will need 

to be surrounded by single quotes. 

 

This variable is valid for all event types. 

loggingEvent 

This variable is a reference to a log4j LoggingEvent object, which is 

only valid for LOG_ENTRY event type. Please see Log4J 

Monitoring for more details on how to set up AMon to publish 

LOG_ENTRY event.  

 

AMon will monitor only those messages that are generated by the 

“org.apache.activemq” package. 

loggingEventMessage 

This is a String object whose value is the message associated with a 

LoggingEvent object. This variable is only valid for LOG_ENTRY 

event types. 

loggingEventPriority 

This is a reference to a String object that is set to either “WARN‟, 

“ERROR, or “FATAL” and represents the priority of a 

LoggingEvent object. This variable is only valid for LOG_ENTRY 

event types.  

messageAck 
This variable is a reference to the MessageAck object and it is only 

valid for the MSG_ACK event type.  

messageDispatch 

This variable is a reference to the MessageDispatch object and it is 

only valid for the following event types: PRE_DISPATCH and 

POST_DISPATCH 

messageReference 

This variable is a reference to the MessageReference object and it is 

only valid for the following event types: MSG_EXPIRED, 

MSG_CONSUMED, MSG_DELIVERED, MSG_DISCARDED, 

and SEND_TO_DLQ.  

producerInfo 

This variable is a reference to the ProducerInfo object.  

 

This variable is only valid for the FAST_PRODUCER, 

ADD_PRODUCER and REMOVE_PRODUCER event types.    

props 

This variable, valid for all event types, is a reference to an AMon 

object that is used to contain properties that are specified via an 

external properties file.   More information on the use of this 

variable can be found in section 10 “Configuring AMon”. 

 

Example usage: 

 

Let‟s assume that there exists a property in the AMon properties 

object called „vmThreadCount‟ and that the property‟s value is set 

to “100”. The following then asks, have the total number of threads 

created and started since the Java virtual machine started reached 

100 or more? 

http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/spi/LoggingEvent.html
http://activemq.apache.org/maven/activemq-core/apidocs/org/apache/activemq/command/MessageAck.html
http://activemq.apache.org/maven/activemq-core/apidocs/org/apache/activemq/command/MessageDispatch.html
http://activemq.apache.org/maven/activemq-core/apidocs/org/apache/activemq/broker/region/MessageReference.html
http://activemq.apache.org/maven/activemq-core/apidocs/org/apache/activemq/command/ConsumerInfo.html
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   language(MEL, 

     "${vm.totalStartedThreadCount >=  props.vmThreadCount}") 

 

The nice thing about using properties instead of constants is that 

you can dynamically change the properties‟ values without 

bouncing the message broker.  

 

The JUEL will coerce the „vmThreadCount‟ property‟s String value 

to an integer.  

 

You can also use the bracket notation, instead of dot notation, to 

access the properties. This comes in handy if the property that 

you‟re accessing includes dots in its name, as this example 

illustrates.  

 

   language(MEL,"${props[„monitor.timer_interval‟] >= 5000}") 

removeSubscriptionInfo 
This variable is a reference to the RemoveSubscriptionInfo object, 

and it is only valid for the REMOVE_SUBSCRIPTION event type. 

sessionInfo 

This variable is a reference to the SessionInfo object, which is only 

valid for the ADD_SESSION and REMOVE_SESSION event 

types.   

 

Here is an example use case.  

 

Is the session id set to 123456789? 

   
language(MEL,"${sessionInfo.sessionId.value == 123456789}") 

subscription 
This variable is a reference to the Subscription object, and is only 

valid for the SLOW_CONSUMER event type. 

transactionId 
This variable is a reference to the TransactionId object, and is only 

valid for the *_TRX (e.g., BEGIN_TRX) event types.  

usage  

This variable is a reference to the Usage object and it is only valid 

for the USAGE_FULL event.  The USAGE_FULL event also 

provides references to the ConnectionContext and Destination 

objects.  

vm 

This variable is a reference to an AMon object that is called 

“VirtualMachine” and it is valid for all event types.  

 

The purpose of this variable is to give the Monlet developer access 

to real-time information for the hosting Java virtual machine.  The 

VirtualMachine object essentially wraps the ManagementFactory  

object and also makes available some of the information that is 

acquired via the Runtime object. Please see VirtualMachine Object 

for a complete list and description of all the „get‟ methods that are 

made available via this vm variable.    

http://activemq.apache.org/maven/activemq-core/apidocs/org/apache/activemq/command/RemoveSubscriptionInfo.html
http://activemq.apache.org/maven/activemq-core/apidocs/org/apache/activemq/command/SessionInfo.html
http://activemq.apache.org/maven/activemq-core/apidocs/org/apache/activemq/broker/region/Subscription.html
http://activemq.apache.org/maven/activemq-core/apidocs/org/apache/activemq/command/TransactionId.html
http://activemq.apache.org/maven/activemq-core/apidocs/org/apache/activemq/usage/Usage.html
http://java.sun.com/javase/6/docs/api/java/lang/management/ManagementFactory.html
http://java.sun.com/javase/6/docs/api/java/lang/Runtime.html
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Here is an example use case.  

Have the total number of threads created and started since the Java 

virtual machine started reached 100 or more? 

 

language(MEL,"${vm.totalStartedThreadCount >=  100}") 

 

Table 2. AMon Variables 

The BaseEvent object is the body of the Camel „in‟ message and can be acquired via the Camel 

Exchange object. Let‟s take the following sample source code, which is that of a simple Monlet 

that is interested only in LOG_ENTRY events. Note how after it has detected a LOG_ENTRY 

message, it sends or pipes the message to a Camel Processor object. The Processor objects must 

implement the process(Exchange) method, and it uses the Exchange object to acquire the „in‟ 

message body, which is of type BaseEvent.  

 
package com.acme.monlets; 

 

import com.ttm.activemq.monitor.Monlet; 

import com.ttm.activemq.monitor.event.BaseEvent; 

import org.apache.camel.Processor; 

import org.apache.camel.Exchange; 

 

public class LogMonlet extends Monlet { 

 

  @Override 

  public void configure() { 

 

   //  Capture all AMon event message types. All Monlets subscribe to AMon events via  

   // the „monitor‟ DSL   verb, which is an extension to the Camel DSL‟s repertoire of verbs.   

  monitor().to("seda:logMonlet"); 

 

    // This Monlet is interested only in LOG_ENTRY event messages, which it will pipe 

    //  to a Processor to extract some information regarding the logged message 

    from("seda:logMonlet").choice(). 

       when().language(MEL,"${eventType == LOG_ENTRY}").          

         process(new Processor() {            

           public void process(Exchange exchange) throws Exception { 

           // Get the message body, which is an AMon BaseEvent object 

           BaseEvent baseEvent = (BaseEvent)exchange.getIn().getBody(); 

 

           // Now that we have the BaseEvent, we can get to all the AMon variables. So lets  

           // print out some information regarding the LoggingEvent 

           System.out.println("LogMonlet: Message message = " + 

                   baseEvent.getLoggingEventMessage()); 

           System.out.println("LogMonlet: Message priority = " + 

                   baseEvent.getLoggingEventPriority()); 
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       }}). 

     end(); 

  } 

} 

So being able to access AMon variables via the BaseEvent comes in handy when creating a 

Camel Processor.  

The Properties File section of this guide shows you how to use the BaseEvent object within a 

process() method to acquire a copy of AMon‟s dynamically configurable properties.    

 

5.3 Methods 

In previous sections, the guide describes the standard JavaBeans „get‟ and „is‟ accessor methods 

that are implicitly invoked via MEL conditional expressions. For example, the MEL expression, 

“${broker.brokerName}” invokes the broker object‟s getBrokerName() accessor method, which 

returns the broker‟s name. Note how you do not specify the „get‟ portion of the method name and 

the first character after „get‟ must be in lower case (this is in accordance with how the JUEL 

takes advantage of the JavaBeans standard). One disadvantage with this JUEL approach towards 

invoking the accessor methods is that you cannot pass parameters to the accessor methods. 

However, the MEL does provide direct access to a few objects‟ methods that do accept input 

parameters, but do not necessarily conform to the JavaBeans standard.  

The first of these objects is the java.lang.String object and the following example illustrates how 

you can access, from within a MEL expression, the String object‟s methods that accept input 

parameters. In this example, we‟re invoking the startsWith() method, which is being used to 

determine if the broker name starts with “mybroker”.   

 

 

language(MEL,"${broker.brokerName.startsWith('mybroker')}") 

 

For the above example, notice how the JUEL convention of invoking the methods is not being 

followed. That is, the method‟s entire name is being supplied. Some String methods are 

overloaded (i.e., there exists more than one method with the same name, but with different input 

parameters). Unfortunately, the JUEL does not inform the MEL as to the number of 

parameters associated with the method invocation. Therefore, the MEL always chooses the 

version of the method with the least number of parameters; the startsWith() method is one 

prime example.  

The following snippet of Monlet source code illustrates how the eventType String object‟s 

equalsIgnoreCase() method is invoked within a MEL expression. Also note how the eventType 

String object is being compared to a String object whose value is specified via the 

monitor.properties file. In this case, the Monlet is using a combination of method and Properties 

File to determine what AMon event message type it should test.   
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… 

 from("seda:SimpleEventMonlet.check_event_type").filter().              

      language(MEL,"${eventType.equalsIgnoreCase(props.simpleEvent)}"). 

              process(new Processor() {              

                 public void process(Exchange exchange) throws Exception {  

                   // The Camel exchange's body is of type BaseEvent 

                  BaseEvent baseEvent = (BaseEvent)exchange.getIn().getBody(); 

                   LOG.info("SimpleEventMonlet: event type = " +  baseEvent.getEventType()); 

                 } 

              }).end();    

… 

 

The MEL also exposes two methods that are provided by the „broker‟ variable or object. One 

method is called getDestination(String name), which allows you to get a reference to a  

Destination object with the specified name. Here‟s an example where a reference to a Destination 

object with the name „TEST.Q‟ is being acquired in order to get statistics on that destination.  

 

 
language(MEL,"${broker.getDestination('TEST.Q').destinationStatistics.messages.count > 100}") 

 

Note how you must specify the method‟s full name.  

The other „broker‟ method that is exposed is called getDestinationStatistics(String name), which 

is a convenience method for accessing the Destination‟s statistics.  Here‟s an example.  

 

 
language(MEL,"${broker.getDestinationStatistics('TEST.Q').messages.count > 100}") 

 

These two methods are handy to have if the Monlet has received an event message that is not 

associated with any particular Destination. In such a situation, the event message‟s „destination‟ 

variable is not valid for the event. One such example is the timer event message, which is 

described next.   

The two methods described above are provided by an AMon-specific object called 

MonitorBroker, which both implements and extends the ActiveMQ Broker interface. The two 

methods are an extension to the Broker interface.   

 

http://activemq.apache.org/maven/activemq-core/apidocs/org/apache/activemq/broker/region/Destination.html
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5.4 Asynchronous Processing 

Many of the example Monlets presented thus far take advantage of seda queues in order to 

asynchronously process the event messages that are published by the AMon container. And as 

mentioned in chapter 4 (The Anatomy of a Monlet), the initial placement of an event message in 

a seda queue is a requirement, because the Monlet must quickly return control to the calling 

AMon container.  

 

When your Monlet design incorporates a pipeline of seda queues, you should note that as an 

AMon event message is forwarded across the pipeline, the operational run state of the ActiveMQ 

message broker can change. Therefore, the possibility does exist that the evaluation of a MEL 

conditional statement will return different values at different stages of the pipeline. For example, 

the queue size associated with an ActiveMQ queue may not have breached a certain threshold at 

stage 1 of the pipeline, but by the time the same event message is processed at stage 3, the queue 

size may have breached the threshold.    

 

6 The Interval Timer 

AMon includes an interval timer that is configured via the “monitor.timer_interval” property. 

This property, which is specified in the AMon Properties File, is used to enable or disable the 

timer and also to specify the timer‟s interval time period in milliseconds.  

By default, the timer is disabled; however, when it is enabled it will publish a 

TIMER_INTERVAL event message every interval time period.  Refer to the EventTypesTable for 

a listing of all variables that are valid for timer event messages.  To enable the timer, you simply 

assign the “monitor.timer_interval” property an integer value greater than zero. For example, to 

have your Monlets receive a TIMER_INTERVAL event message every 100 milliseconds, you 

add the following line to the AMon Properties File.  

monitor.timer_interval=100  

If you update the property, while the message broker is active, the new property value will take 

effect as soon as you save the file. To disable the timer, simply assign the property a value of 

zero.   

monitor.timer_interval=0  

If you want to create a Monlet that monitors a resource, but does not do so via potentially high-

volume event messages (e.g., MSG_DELIVERED, MSG_CONSUMED, MSG_ACK), then it 

can rely on the TIMER_INTERVAL event messages.  
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7 SNMP Camel Endpoint 

As mentioned in the SNMP Agent and MIB section of the guide, AMon includes an embedded 

SNMP v2 Agent and corresponding MIB. Together, the agent and MIB are used by SNMP-

capable network management applications to monitor the agent‟s corresponding ActiveMQ 

message broker. By default, the agent automatically generates or produces SNMP notifications 

(a.k.a., traps) when the ActiveMQ message broker starts and stops (see SNMP Notifications).  

This section of the guide describes how Monlets can also generate SNMP notifications. To send 

or produce SNMP notifications, the Monlets utilize a Camel endpoint called, “snmp:trap”, which 

is provided by the AMon product. This endpoint is essentially an interface that the SNMP agent 

provides, via Camel, that allows the Monlets to produce SNMP notifications.  

There are two types of notifications that the Monlet can produce: LoggingNotification and 

MonitorNotification. The following sections describe their makeup and provide more 

information on how the Monlets produce the notification via the “snmp:trap” endpoint.   

7.1 SNMP LoggingNotification 

This notification is issued by Monlets to notify SNMP management applications that the 

ActiveMQ message broker has logged a message with a severity of WARN or higher. To achieve 

this, the Monlet subscribes to the LOG_ENTRY AMon event message and simply forwards, via 

the “snmp:trap” Camel endpoint, those event messages to the SNMP agent. See the Log4J 

Monitoring section of the guide for more information regarding the LOG_ENTRY event and 

how to set up AMon to generate these event types.   

 

The following sample Monlet illustrates how simple it is to do this; please refer to the comments 

in the example for additional information.   

 

package com.acme.monlets; 

 

import com.ttm.activemq.monitor.Monlet; 

import com.ttm.activemq.monitor.event.BaseEvent; 

import org.apache.camel.Processor; 

import org.apache.camel.Exchange; 

/** 

 * 

 *  This Monlet subscribes to LOG_ENTRY event messages and pipes the received  

 *  messages to the SNMP agent via the “snmp:trap” endpoint/component.  Upon  

 *  receiving a LOG_ENTRY message,  the SNMP agent will generate a  

 *  LoggingNotification trap that includes information taken from the LOG_ENTRY  

 *  event message.  

 *    

 */ 

public class LogMonlet extends Monlet { 

 

  @Override 

  public void configure() { 



Revision 2.0.0 ActiveMQ Monitor             
 

  

 Copyright 2009, Total Transaction Management    

 www.ttmsolutions.com 

 

39 

 

    // Capture AMon event message types and place them in the asynchronous seda  

    // queue 

    monitor().to("seda:LogMonlet"); 

 

    // Pipe the LOG_ENTRY event messages to the SNMP Agent who will extract  

    // information from the LoggingEvent object for the correspoding LoggingNotification 

    // notification 

    from("seda:LogMonlet"). 

       choice(). 

          when().language(MEL, "${eventType == LOG_ENTRY}"). 

               to("snmp:trap"). 

       end(); 

 

  } 

} 

 

 

That‟s really all there is to a Monlet that produces a LoggingNotification. It just forwards or 

pipes the LOG_ENTRY event message to the SNMP agent via the “snmp:trap” Camel endpoint. 

Upon receiving the LOG_ENTRY event message, the agent uses the event message‟s reference 

to the LoggingEvent object to extract all relative information that is used to build the 

corresponding SNMP notification.  

 

The following block of ASN.1 notation, which is taken from AMon‟s SNMP MIB, defines the 

SNMP LoggingNotification. It gives you an idea of the information that is carried in the 

LoggingNotification, and as you can see, a lot of the trap* attributes correlate back to the 

LoggingEvent object.  

 

 amqLoggingNotification NOTIFICATION-TYPE 

        OBJECTS {            

                        trapDateTime,               -- date and time stamp of the notification 

                        trapBrokerName,           -- the broker‟s name 

                        trapBrokerId,                 -- broker id  

                        trapLogClassName,       -- the class that generated the log entry 

                        trapLogFileName,          -- the classes file name 

                        trapLogLineNumber,     -- the line number w/in the file from which the log entry  

        -- was generated  

                        trapLogMethodName,    -- the name of the method that generated the log entry 

                        trapLogThreadName,     -- the name of thread the generated the log entry 

                        trapLogTimeStamp,       -- the time stamp associated with the log entry 

                        trapLogMessage,            -- the log entry‟s message 

                        trapLogLevel,                 -- the severity (i.e,. WARN, ERROR, or FATAL) 

                        trapMachineName          -- the name of the machine from which the log entry  

                                                               -- was generated 

                } 

        STATUS              current 

http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/spi/LoggingEvent.html
http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/spi/LoggingEvent.html
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        DESCRIPTION         "Used for notifying that a message has been logged 

                            to the AMQ log file" 

        ::= { amqTraps 1 } 

   

The SNMP agent assigns values to the trap* attributes prior to sending the notification. The only 

thing the Monlet has to do is forward the LOG_ENTRY event message to the agent.  

 

The SNMP Notifications section of the guide shows you how to configure, via the AMon 

Properties File, the hosts that are to receive the notifications.  However, your Monlet can specify 

its own list of hosts in addition to the ones listed in the properties file. Below is the LogMonlet 

again, but this time it is specifying, via a Map object, a community called “TTMLocations” that 

contains two hosts called, “DIEGO” and “TAMPA”
5
.  When the SNMP agent receives the 

LOG_ENTRY event message, it will check if the Monlet has specified such a Map object in the 

Camel Exchange object. If the object exists in the Exchange, the agent will send the notification 

to the hosts that are specified in the Map object.   

 

Note how the Monlet uses the Monlet.setSNMPCommunityMap() static method to nail the Map 

object to the Camel Exchange object prior to forwarding the LOG_ENTRY event message to the 

agent.  

 

package com.acme.monlets; 

 

import java.util.HashMap; 

import java.util.List; 

import java.util.Vector; 

 

import com.ttm.activemq.monitor.Monlet; 

import com.ttm.activemq.monitor.event.BaseEvent; 

import org.apache.camel.Processor; 

import org.apache.camel.Exchange; 

/** 

 * 

 *  This Monlet subscribes to LOG_ENTRY event messages and pipes the received  

 *  messages to the SNMP agent via the “snmp:trap” endpoint/component.  Upon  

 *  receiving a LOG_ENTRY message,  the SNMP agent will generate a  

 *  LoggingNotification trap that includes information taken from the LOG_ENTRY  

 *  event message.  

 *    

 */ 

public class LogMonlet extends Monlet { 

 

  @Override 

  public void configure() { 

 

                                                           
5
  IP addresses like “123.45.67.89” are also permitted 
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    // Capture AMon event message types and place them in the asynchronous seda  

    // queue 

    monitor().to("seda:LogMonlet"); 

 

    // Pipe the LOG_ENTRY event messages to the SNMP Agent who will extract  

    // information from the LoggingEvent object for the correspoding LoggingNotification 

    // notification 

    from("seda:LogMonlet"). 

       choice(). 

 

          when().language(MEL, "${eventType == LOG_ENTRY}"). 

              process(new Processor() { 

                public void process(Exchange exchange) throws Exception { 

 

                  // Create a Map containing the communities and host(s) at those communities  

                  // that we would like to send the trap to. This Map will be merged with the  

      // community and host information (if any) that is located in the  AMon 

     //  properties file.  

                 HashMap<String, List> hostMap = new HashMap<String,List>(); 

                 Vector<String> hosts = new Vector<String>(); 

                 hosts.add("DIEGO"); 

                 hosts.add("TAMPA"); 

                 hostMap.put("TTMLocations", hosts); 

 

                 //  Use this static method to pass the hostMap to the SNMP agent 

                Monlet.setSnmpCommunityMap(exchange, hostMap); 

 

               // forward on the BaseEvent object 

                exchange.getOut().setBody(exchange.getIn().getBody()); 

 

            } 

        }). to("snmp:trap"). 

       end(); 

 

  } 

} 

 

 

7.2 SNMP MonitorNotification 

The MonitorNotification is the second type of SNMP notification that a Monlet can generate, 

and it is used to send general monitoring information to the SNMP management applications. 

For example, a Monlet can send this notification if a particular resource‟s threshold has been 

breached, a destination (queue or topic) no longer has consumers, or a particular client 

application has connected with the message broker.  
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Here is the ASN.1 notation for the MonitorNotification 

 

amqMonitorNotification NOTIFICATION-TYPE 

        OBJECTS {            

                        trapBrokerName, 

                        trapBrokerId, 

                        trapDateTime, 

                        trapMonitorPropertyName, 

                        trapMonitorResourceName, 

                        trapMonitorPropertyValue, 

                        trapMonitorMessage, 

                        trapMachineName 

                } 

        STATUS              current 

        DESCRIPTION         "General purpose monitoring notification. Typical 

                            in response to a gauge or counter breaching a 

                            threshold" 

        ::= { amqTraps 4 } 

The SNMP agent will assign values to the trap* attributes. However, there are a handful of 

attributes whose values should be specified by the Monlet before it forwards the event message 

to the SNMP agent.  These are the attributes with the “trapMonitor” prefix. The Monlet super 

class provides a handful of static convenience methods that the Monlets use to specify the values 

for the trapMonitor* attributes. The following lists and describes all the Monlet setSnmp* static 

methods.   

 

 

    /** 

     *  The monlet uses this method to specify the name of the property that triggered the  

     *  MonitorNotification.  For example, the name can be a threshold like 

     *   'maxNumberOfMessages', 'maxNumberOfConnections', or 'minNumberofThreads', etc. 

     */ 

    public static void setSnmpTrapMonitorPropertyName(Exchange exchange, 

            String propertyName); 

 

   /** 

     *  The monlet uses this method to specify the the ASCII string representation 

     *  of the value associated with the property name that triggered this 

     *  notification. For example, this can be the value of a threshold that was 

     *  breached and caused the triggering of the MonitorNotification. 

     */ 

    public static void setSnmpTrapMonitorPropertyValue(Exchange exchange, 

            String propertyValue); 

 

    /** 

     * The monlet uses this method to associate a message with a monitor  
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     * notification. 

     */ 

    public static void setSnmpTrapMonitorMessage(Exchange exchange, 

            String message); 

 

     

    /** 

     * The monlet uses this method to specify the name of the resource 

     * associated with the triggering of the MonitorNotification (trap). For 

     * example, the name of a queue or topic. 

     */ 

    public static void setSnmpTrapMonitorResourceName(Exchange exchange, 

            String resourceName); 

 

  /** 

     * The monlet uses this static method to nail its snmp community-host 

     *  map to the exchange; this will then allow the snmp agent to access 

     *  the optional map 

     */ 

    public static void setSnmpCommunityMap(Exchange exchange, Map communityMap); 

 

 

The Monlet must set at least one trapMonitor* attribute. If not, the following exception is 

thrown. 

com.ttm.activemq.snmp.camel.SnmpProducer.process(): Insufficient information to generate 

meaningful snmp notification  

 

What follows is an example of a Monlet that sends a MonitorNotification whenever it receives 

any event message type. Prior to forwarding the message to the SNMP agent, it invokes the 

Monlet.setSnmp* static methods to set the corresponding MonitorNotification attributes. Please 

note that this is just an example of how to invoke these static methods.  

 

package com.acme.monlets; 

 

import java.util.HashMap; 

import java.util.List; 

import java.util.Vector; 

 

import com.ttm.activemq.monitor.Monlet; 

import org.apache.camel.Processor; 

import org.apache.camel.Exchange; 

 

public class SnmpMonlet extends Monlet { 

 

    public void configure() { 
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       // Subscribe to AMon events and forward to seda queue so that the event can be processed  

       // asynchronously 

       monitor().to("seda:snmp"); 

         

        from("seda:snmp"). 

                process(new Processor() { 

 

                  public void process(Exchange exchange) throws Exception { 

 

                  // do some sort of processing here                 

                 Monlet.setSnmpTrapMonitorPropertyName(exchange,"somePropertyName"); 

                 Monlet.setSnmpTrapMonitorPropertyValue(exchange,"1234"); 

                 Monlet.setSnmpTrapMonitorResourceName(exchange,"someResourceName"); 

                 Monlet.setSnmpTrapMonitorMessage(exchange, 

                        "Hello World From The SnmpMonlet");  

 

               // forward on the BaseEvent object 

                exchange.getOut().setBody(exchange.getIn().getBody()); 

                 

               } 

          }).to("snmp:trap"); 

    } 

} 

  

8 JMX Camel Notification Endpoint 

AMon provides a Camel endpoint through which Monlets can send JMX notifications. To send a 

JMX notification, a Monlet utilizes a Camel endpoint URI string of “jmx:notify”. This endpoint 

is essentially an interface to AMon‟s “Notifier” MBean (see JConsole screenshot below), which 

performs the actual sending of the notification object to the JMX clients.    
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The screenshot above illustrates the MBean navigation tree of a JConsole session. In the tree, 

note the AMon “Notifier” MBean and underneath that MBean also note the highlighted 

“Notification[2]” string.  The “[2]” portion of the string is a notification counter that lets you 

know that you have subscribed to notifications and the number of notifications that have been 

received. When you first subscribe to notifications or clear existing notifications, you have an 

empty set of brackets like this, “[ ]”.  As depicted in the screenshot below, if you do not 

subscribe to notifications, the “[ ]” substring will not be displayed.  
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To subscribe to notifications, simply click on “Notifications” and you will be presented with the 

“Notification buffer” (see right panel in screenshot below). At the bottom of the buffer or panel, 

you are presented with three buttons: Subscribe, Unsubscribe, and Clear. Click on Subscribe to 

subscribe and begin to receive notifications from Monlets.    

 

 
 

 

The screenshot below depicts 2 notifications that have been received by the JConsole.  
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The “Message” column reflects the message String object that the Monlet has assigned to the 

notification object‟s message attribute.  The TimeStamp and SeqNum columns reflect the values 

that the Monlet assigned to the notification object‟s time stamp and sequence number attributes, 

respectively. If the Monlet does not assign values to these two attributes, then the Notifier will 

assign values to the two attributes.  The Type, Event, and Source columns have no significance.  

 

The Monlet has the option of passing a String (Message) or AttributeChangeNotification object 

to the Notifier. If it is a String object, the Notifier will create an AttributeChangeNotification 

object and assigns the String to that object. It will also assign a sequence number and time stamp 

value to the just-created AttributeChangeNotification object. If the Monlet creates and passes an 

AttributeChangeNotification object to the Notifier, the Notifier will only ensure that the object‟s 

sequence number and time stamp attributes are assigned values.  If the Monlet creates an 

AttributeChangeNotification object, then it also has the option of assigning a value to the 

UserData attribute (see Notification).  

 

Please refer to the JmxMonlet.java file in the com.acme.monlets package as an example of a 

Monlet that sends JMX notifications.  The source code for the com.acme.monlets package is 

included in the AMon product archive file (see Example Monlets). 

  

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/AttributeChangeNotification.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/Notification.html
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9 Installing AMon   

9.1 Installing the AMon Files 

Installing AMon is a relatively easy process comprising these steps.  

 

1. Download the AMon zip (Windows) or gzip (Unix/Linux) archive file and copy it to the 

target ActiveMQ machine.  

 

2. Extract the files from the archive file into the ACTIVEMQ_HOME directory. This will place 

files into the conf, docs, lib/optional, and example subdirectories. 

 

On Unix/Linux: 

 

cd $ACTIVEMQ_HOME 

gunzip /path/to/amon-1.1.0.tar.gz 

tar xvf /path/to/amon-1.1.0.tar 

 

3. Obtain a license key file, and place the file in the ACTIVEMQ_HOME/conf directory. If you 

are running an embedded broker (i.e., your application and broker are running within the 

same VM), make sure to place the license file in the broker's classpath.  

 

4. After you have developed one or more of your own Monlets, place the jar file(s) that contain 

your Monlet class files into the ACTIVEMQ_HOME/lib/optional directory.   

 

That‟s it! Installation is now complete; now we need to configure the ActiveMQ message broker 

to load AMon and your Monlets on startup, which is all explained in the next section.   

  

9.2 Loading AMon into the ActiveMQ Message Broker 

To have the ActiveMQ message broker load the AMon container on startup, you must define an 

AMon-specific plugin bean within the message broker‟s Spring XML configuration file (by 

default ACTIVEMQ_HOME/conf/activemq.xml). There are two options you can take, with the 

first being depicted in the XML listing below, which is a snippet of an ActiveMQ message 

broker‟s XML configuration file. Note how the AMon bean, with an id of “monitor”, is defined 

outside the <broker> element and is referenced via the <broker> element‟s “plugins” attribute.  

 Option #1 
<!--                                 ActiveMQ Broker Configuration File   --> 

<beans 

  xmlns="http://www.springframework.org/schema/beans"         

  xmlns:amq="http://activemq.apache.org/schema/core"   

  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"   

  xsi:schemaLocation="http://www.springframework.org/schema/beans 

  http://www.springframework.org/schema/beans/spring-beans-2.0.xsd 

  http://activemq.apache.org/schema/core  

http://www.ttmsolutions.com/Transactional_Software_Solutions/Active_Monitor_AMon.php
http://www.ttmsolutions.com/Apache_Software/amonkeyrqst.php
http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
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  http://activemq.apache.org/schema/core/activemq-core.xsd"> 

 

   <!-- Allows us to use system properties as variables in this configuration file --> 

    <bean class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer"> 

        <property name="locations"> 

            <value>file:${activemq.base}/conf/credentials.properties</value> 

        </property>       

    </bean>   

 

  <broker xmlns="http://activemq.org/config/1.0" brokerName="secprototype"  

       dataDirectory="${activemq.base}/data" plugins="#monitor"> 

 …  
       <transportConnectors> 

 <transportConnector name="openwire" uri="tcp://localhost:61616" /> 

       </transportConnectors> 

         … 
  </broker> 

  <bean id="monitor" class="com.ttm.activemq.monitor.MonitorPlugin"/>   

</beans>  

 

That‟s it! With those two minor additions to the message broker‟s XML configuration file, 

you‟ve configured the message broker to load and start AMon. The Configuring AMon section 

of this document will show you how to configure AMon and the Monlets that it hosts.    

The second option is depicted in the XML snippet below. With this approach, note how the 

“monitor”  bean  is defined within the <broker> element‟s <plugins> sub-element and that it is 

no longer referenced via the broker element‟s “plugins” attribute.  Also note how you must 

specify a name space (i.e., xmlns=”http://www.springframework.org/schema/beans”) for the 

AMon or monitor bean. 

Option #2 
<!--                                 ActiveMQ Broker Configuration File   --> 

 

<beans 

  xmlns="http://www.springframework.org/schema/beans"         

  xmlns:amq="http://activemq.apache.org/schema/core"   

  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"   

  xsi:schemaLocation="http://www.springframework.org/schema/beans 

  http://www.springframework.org/schema/beans/spring-beans-2.0.xsd 

  http://activemq.apache.org/schema/core  

  http://activemq.apache.org/schema/core/activemq-core.xsd"> 

 

   <!-- Allows us to use system properties as variables in this configuration file --> 

    <bean class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer"> 

        <property name="locations"> 

            <value>file:${activemq.base}/conf/credentials.properties</value> 

        </property>       

    </bean>   

 

http://activemq.apache.org/schema/core/activemq-core.xsd
http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
http://activemq.apache.org/schema/core/activemq-core.xsd
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  <broker xmlns="http://activemq.org/config/1.0" brokerName="broker1"  

       dataDirectory="${activemq.base}/data"> 

   

       <transportConnectors> 

 <transportConnector name="openwire" uri="tcp://localhost:61616" /> 

       </transportConnectors>   

 

       <plugins> 

         <bean id="monitor"  

              class="com.ttm.activemq.monitor.MonitorPlugin" 

              xmlns="http://www.springframework.org/schema/beans"/> 

       </plugins> 

 

  </broker> 

 

</beans>  

 

 

When the ActiveMQ message broker successfully loads and starts the ActiveMQ message 

broker, you will see the following informational messages on the broker‟s system console. 

 

INFO  MonitorPlugin                  - AMon License Key Is Valid 

INFO  MonitorPlugin                  - Starting SNMP 

INFO  MonitorPlugin                  - Started  

 

You will not see the “Starting SNMP” message if you‟ve disabled the SNMP agent. You will 

instead see the following message 

 

INFO  MonitorPlugin                  - SNMP has been disabled 

 

If your AMon license file is not valid or has not been installed, then you will see a corresponding 

error message with the “ERROR” prefix.  For example, if AMon could not find the license file it 

will put out this ERROR message to the console. 

 

ERROR MonitorPlugin                  - Unable to locate AMon license file 

 

If the license file has expired, AMon will put the following ERROR message out to the console.  

 

ERROR MonitorPlugin                  - AMon License Key has expired  

 

If the license key file could not be found or has expired, the ActiveMQ message broker will load 

AMon, but it will not be started.   

 

9.3 Loading Your Monlets into the ActiveMQ Message Broker   

The final step in the installation process is to configure the ActiveMQ message broker to load 

your Monlets when it starts up.  To do this, all you have to do is define a Camel context within 
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the ActiveMQ message broker‟s XML configuration file and assign it the one or more packages 

that contain your Monlets. As an example, take a look at the following ActiveMQ message 

broker‟s XML configuration file. Note in bold how a Camel context and its packages have been 

defined.  

 

 
<!--                                 ActiveMQ Broker Configuration File   --> 

<beans 

  xmlns="http://www.springframework.org/schema/beans"         

  xmlns:amq="http://activemq.apache.org/schema/core"   

  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"   

  xsi:schemaLocation="http://www.springframework.org/schema/beans 

  http://www.springframework.org/schema/beans/spring-beans-2.0.xsd 

  http://activemq.apache.org/schema/core  

  http://activemq.apache.org/schema/core/activemq-core.xsd"> 

 

   <!-- Allows us to use system properties as variables in this configuration file --> 

    <bean class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer"> 

        <property name="locations"> 

            <value>file:${activemq.base}/conf/credentials.properties</value> 

        </property>       

    </bean>   

 

  <broker xmlns=" http://activemq.apache.org/schema/core" brokerName="broker1"  

       dataDirectory="${activemq.base}/data" plugins="#monitor"> 

 …  
       <transportConnectors> 

 <transportConnector name="openwire" uri="tcp://localhost:61616" /> 

       </transportConnectors> 

         … 
  </broker> 

 

  <bean id="monitor" class="com.ttm.activemq.monitor.MonitorPlugin"/>   

 

   <camelContext id="AmonCamel" xmlns="http://camel.apache.org/schema/spring"> 

         <package>com.acme.monlets</package>         

   </camelContext>    

 

</beans>  

 

 

That‟s all it takes! When the broker starts, your Monlet class files are loaded by Camel and your 

Monlets are ready to go.  

 

You can also define more than one Camel context (just make sure to give them different bean 

ids), each with one or more Monlet packages. Just remember that Monlets cannot communicate 

with one another if they are in different Camel contexts.  

 

http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
http://activemq.apache.org/schema/core/activemq-core.xsd
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If you also happen to have non-AMon related Camel contexts defined in your activemq.xml file, 

make sure the AMon Camel contexts are defined after all non-AMon Camel contexts (see the 

example below). Not doing so will result in spurious events being generated.   

 
<!--                                 ActiveMQ Broker Configuration File   --> 

<beans 

   xmlns="http://www.springframework.org/schema/beans"         

  xmlns:amq="http://activemq.apache.org/schema/core"   

  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"   

  xsi:schemaLocation="http://www.springframework.org/schema/beans 

  http://www.springframework.org/schema/beans/spring-beans-2.0.xsd 

  http://activemq.apache.org/schema/core  

  http://activemq.apache.org/schema/core/activemq-core.xsd"> 

 

 

    <!-- Allows us to use system properties as variables in this configuration file --> 

    <bean class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer"> 

        <property name="locations"> 

            <value>file:${activemq.base}/conf/credentials.properties</value> 

        </property>       

    </bean>   

 

  <broker xmlns=" http://activemq.apache.org/schema/core" brokerName="broker1"  

       dataDirectory="${activemq.base}/data" plugins="#monitor"> 

 …  
       <transportConnectors> 

 <transportConnector name="openwire" uri="tcp://localhost:61616" /> 

       </transportConnectors> 

         … 
  </broker> 

 

  <bean id="monitor" class="com.ttm.activemq.monitor.MonitorPlugin"/>   

 

  <!-- Ensure that non-AMon camelContexts are always defined prior to AMon-related 

         camelContexts --> 

 

   <camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">         

        <package>org.foo.bar</package>         

        <route> 

            <from uri="activemq:example.A"/> 

            <to uri="activemq:example.B"/> 

        </route> 

    </camelContext>        

 

   <camelContext id="AmonCamel" xmlns="http://camel.apache.org/schema/spring"> 

         <package>com.acme.monlets</package>         

   </camelContext>    

 

</beans>  

 

http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
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9.4 Example Monlets    

The amon-<version>.zip or .gzip archive file also includes a handful of example Monlets, which 

can be found in the archive‟s example/monlets directory.  See the README.TXT file for the 

deployment and configuration instructions for these Monlets. The directory also includes the 

corresponding source code‟s Maven project object model (pom) file, which can be used to 

rebuild the example Monlets package.  

 

 

10 Configuring AMon 

So now that you‟ve learned how to install/load AMon and the Monlets, it is time to discuss how 

to configure AMon in general. This section of the guide describes how to configure various 

AMon components.  

 

10.1 Properties File 

AMon and the Monlets that it hosts are primarily configured and managed through an external 

properties file. By default, this properties file is called “monitor.properties”. You can place the 

file anywhere in the ActiveMQ broker‟s default class path (ACTIVEMQ_CLASSPATH), but it 

is best to place it in the ACTIVEMQ_HOME /conf directory. If you would like to place the file 

outside the ActiveMQ class path or change its name, use the MonitorPlugin‟s „propertiesFile‟ 

bean property to specify the new location and/or name. Below is a sample message broker XML 

configuration file that illustrates the use of the „propertiesFile‟ property (note the text in bold).  

 
<!--                                 ActiveMQ Broker Configuration File   --> 

<beans 

   xmlns="http://www.springframework.org/schema/beans"         

  xmlns:amq="http://activemq.apache.org/schema/core"   

  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"   

  xsi:schemaLocation="http://www.springframework.org/schema/beans 

  http://www.springframework.org/schema/beans/spring-beans-2.0.xsd 

  http://activemq.apache.org/schema/core  

  http://activemq.apache.org/schema/core/activemq-core.xsd"> 

 

 

   <!-- Allows us to use system properties as variables in this configuration file --> 

    <bean class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer"> 

        <property name="locations"> 

            <value>file:${activemq.base}/conf/credentials.properties</value> 

        </property>       

    </bean>   

 

 

http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
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  <broker xmlns=" http://activemq.apache.org/schema/core" brokerName="secprototype"  

       dataDirectory="${activemq.base}/data" plugins="#monitor"> 

 …  
  </broker> 

 

  <bean id="monitor" class="com.ttm.activemq.monitor.MonitorPlugin"> 

      <property name="propertiesFile" value="c:\temp\myMonitor.properties"/>   
  </bean>   

 

   <camelContext id="camel" xmlns="http://camel.apache.org/schema/spring"> 

         <package>com.acme.monlets</package>         

   </camelContext>   

 

</beans>  

 

 

 

Through the monitor properties file you: 

 

 Control the event message types that AMon will publish. Recall that by default the 

publishing of all event messages is disabled.  

 Define Monlet-specific properties.   

 Define SNMP-specific properties  

 

There are two types of properties that can be defined in the properties file: Monitor and Monlet-

specific properties. Let‟s first discuss Monitor-specific properties. A property name that follows 

the “monitor.<event type>” format is used to designate a Boolean property that enables/disables 

the publishing of the corresponding event message type. The <event type> portion of the 

property name must match one of the event types listed in the event types table (see Event Types 

as Constants), but it must be in lower case. For example, let‟s suppose that you‟ve developed one 

or more Monlets that would like to receive ADD_CONNECTION and 

REMOVE_CONNECTION event messages. To enable the publishing of these two event 

message types, define the two properties called “monitor.add_connection” and 

“monitor.remove_connection” and assign them both a value of “true” as this simple monitor 

properties file example illustrates.  

 

# Enable the publishing of the ADD_CONNECTION and REMOVE_CONNECTION  

# event message types.  

monitor.add_connection=true 

monitor.remove_connection=true 

 

 

Please note that the entire property name must be in lower case.    

Properties with the “monitor.” prefix are reserved for the AMon product.  

As mentioned in a previous section, by default AMon will not publish any event messages. You 

must decide what event types you‟d like your Monlets to receive and then enable the publishing 
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of the corresponding event messages. Use caution when choosing what events to enable, because 

enabling too many or all events will result in an overall performance degradation.  In particular, 

use caution when enabling what can easily become very “high volume” events such as 

MSG_DELIVERED and MSG_CONSUMED.  

 

Now let‟s discuss Monlet-specific properties, which can be assigned any name as long as they 

don‟t conflict with the previously described Monitor-specific properties. A Monlet-specific 

property is one that can be referenced within a MEL expression statement. For example, let‟s 

suppose that you‟ve got the properties file defined below. It consists of two Monitor-specific 

properties and two Monlet-specific properties called, “myBrokerName” and “maxThreads”. 

 

 

# Enable the publishing of the ADD_CONNECTION and REMOVE_CONNECTION  

# event message types.  

 

monitor.add_connection=true 

monitor.remove_connection=true 

 

# Monlet-specific properties 

 

myBrokerName=fred 

maxThreads=100 

 

 

The “myBrokerName” property can be referenced from within a MEL expression as follows.  

 

language(MEL,"${broker.brokerName == props.myBrokerName}") 

 

Let‟s take a closer look at what‟s happening within the above MEL expression. The expression is 

testing whether the ActiveMQ broker‟s name matches the value assigned to the 

“myBrokerName” property. The “broker.brokerName” portion of the expression is using the 

MEL mapped „broker‟ variable to reference the ActiveMQ Broker object‟s getBrokerName() 

method and thus acquire the name of the hosting message broker. The “props.myBrokerName” 

portion of the expression is using the MEL mapped „props‟ variable to reference a Map object 

that contains all of the properties defined in the properties file. And in this particular case, the 

“myBrokerName” property is being referenced.     

 

Let‟s take a look at another example.  

 

language(MEL,"${vm.totalStartedThreadCount >= props.maxThreads}") 

 

In the above example, the MEL expression is testing whether the hosting virtual machine has 

started more than 100 threads since it was first launched. In this case, the left hand portion of the 

expression is using the „vm‟ MEL variable to reference the VirtualMachine Object and its 

getTotalStartedThreadCount() method. And as in the previous example, the right hand portion of 

the expression is once again using the MEL mapped „props‟ variable to reference the Map object 

that contains all of the properties defined in the properties file.  However, in this case the String 

http://activemq.apache.org/maven/activemq-core/apidocs/org/apache/activemq/broker/Broker.html
http://java.sun.com/javase/6/docs/api/java/util/Map.html
http://java.sun.com/javase/6/docs/api/java/util/Map.html
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value of the „maxThreads‟ properties is being coerced to a type that matches the return value of 

the getTotalStartedThreadCount() method.  

 

You can also use the UEL‟s bracket notation to access the properties. This comes in handy if you 

need to access a property name that includes the dot notation. For example, let‟s suppose you 

wanted to access one of the monitor-specific properties (e.g., monitor.timer_interval) and you 

used the dot notation, as this example illustrates.  

 

language(MEL,"${props.monitor.timer_interval >= 5000}") 

 

The above statement results in an error, because the MEL attempts to access the props object‟s 

„monitor‟ property and then that object‟s „timer_interval‟ property; both of which do not exist.  

As an alternative, you can use the bracket notation to access the property, as illustrated in this 

example. 

 

language(MEL,"${props[„monitor.timer_interval‟] >= 5000}") 

 

If you make any changes to the properties file, while the ActiveMQ message broker is running, 

AMon automatically detects that the file has been modified, reloads the file, and the new 

property values take effect immediately.  In this way, AMon allows you to dynamically re-

configure your Monlets. 

 

Your Monlet can also access the properties from within its Processor object‟s „process‟ method. 

Below is a snippet of Monlet code that illustrates how the Monlet is iterating through the 

properties from within the process method.   

 

package com.acme.monlets; 

 

import java.util.Properties; 

import java.util.Iterator; 

import com.ttm.activemq.monitor.event.BaseEvent; 

import com.ttm.activemq.monitor.Monlet; 

import org.apache.camel.Processor; 

import org.apache.camel.Exchange; 

 

public class PropertiesMonlet extends Monlet { 

 

    public void configure() { 

 

        // Subscribe to AMon events and forward to seda queue so that the 

        // event can be processed asynchronously 

        monitor().to("seda:PropertiesMonlet"); 

 

        from("seda:PropertiesMonlet"). 

                process(new Processor() { 

 

            public void process(Exchange exchange) throws Exception { 
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                // Access the message‟s body, cast it to BaseEvent, and then use BaseEvent 

                // to get the properties and iterate through them 

                BaseEvent baseEvent = (BaseEvent) exchange.getIn().getBody(); 

                Properties props = baseEvent.getMonitorProperties(); 

                for (Iterator i = props.keySet().iterator(); i.hasNext();) { 

                    String key = (String) i.next(); 

                    System.out.println("PropertiesMonlet: Key = " + key + 

                            " Value = " + props.get(key).toString()); 

                } 

            } 

        }); 

 

    } 

} 

 

Note how the Monlet uses the Camel exchange object to get the message body. All the event 

messages that the AMon core plugin component publishes to the Monlets are of type 

com.ttm.activemq.monitor.event.BaseEvent. Therefore, your Monlet has access to the BaseEvent 

object and its „get‟ methods. The BaseEvent‟s getMonitorProperties() method returns a copy of 

the AMon properties object. Another BaseEvent method that Monlet developers will find 

interesting is the getEventType(), which returns the String representation of the event type.  

 

 

10.2 JMX Client 

You can also update the properties through a JMX client like the JConsole. AMon includes JMX 

MBeans through which you can manage AMon (see The Management Console). The MBeans 

allow you to invoke the following properties-related operations: 

 

 View Properties: this operation will display the current list of properties and their 

values.  

 Put Property: this operation allows you to add a new property or change the value of 

an existing property 

 Remove Property: this operation allows you to remove an existing property. Please 

note that removing a Monitor-specific property sets the value of that property to its 

default setting.  

 Save Properties: this operation will write out the current set of properties and their 

values to the external properties file. So if you‟ve updated the properties, through the 

JMX client, you can use this operation to ensure that your updates will remain valid 

the next time the message broker is started.   

 

10.3 Log4J Monitoring 

AMon can be configured to monitor messages that are written to the ActiveMQ log file, which is 

typically called “activemq.log” and located in “ACTIVEMQ_HOME/data/<broker name>”.   

http://java.sun.com/javase/6/docs/technotes/guides/management/jconsole.html
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Only messages with the following log4j priorities or levels will be monitored: WARN, ERROR, 

and FATAL. Also, AMon will only monitor those messages that are generated by object 

instances that belong to the “org.apache.activemq” package.  

 

To enable the monitoring of log4j messages, you must edit the log4j.properties file, which is 

located in “ACTIVEMQ_HOME/conf, as follows. 

 

1. Append the “, monitor” string to this line, which should be towards the top of the file.  

 

log4j.rootLogger=INFO, stdout, out 

 

The above line must end up looking like this.  

 

log4j.rootLogger=INFO, stdout, out, monitor 

 

2. Add the following lines to the end of the file.  

 

# Monitor appender 

log4j.appender.monitor=com.ttm.activemq.monitor.Appender 

log4j.appender.monitor.layout=org.apache.log4j.PatternLayout 

log4j.appender.monitor.layout.ConversionPattern=%d [%-15.15t] %-5p %-30.30c{1} - %m%n 

 

You must then make sure to set the monitor.log_entry property in the Properties File to true like 

so. 

 

# Enable the publishing of the LOG_ENTRY event message type 

 

monitor.log_entry=true 

 

 

 

That‟s it! With those two simple edits, AMon will monitor ActiveMQ‟s log file and publish the 

LOG_ENTRY event message type.   
 

 

10.4 SNMP Agent 

 

This section describes how to configure AMon‟s embedded SNMP v2 agent. The following table 

lists and describes all of the agent‟s configuration properties that may be specified through 

ActiveMQ‟s XML configuration file.  

 

 

Variable Name  Default Value Description  

snmpCommunity   



Revision 2.0.0 ActiveMQ Monitor             
 

  

 Copyright 2009, Total Transaction Management    

 www.ttmsolutions.com 

 

59 

 

activemq 

The community name used for sending 

SNMP notifications to SNMP network 

management applications.  

 

snmpHostName 

 

 

 

 

 

 

 

 

 

The machine‟s IP 

address 

 

This is the hostname or IP address that the 

agent uses for communicating with the 

SNMP management applications; therefore, 

management applications must send SNMP 

requests to this hostname or IP address. 

 

This also comprises the default list of target 

hostnames or IP addresses that the agent will 

target for sending notifications (traps). So by 

default, SNMP notifications will only be sent 

to the local or hosting machine. Please see  

SNMP Notifications for details on how to add 

hostnames to the notification target list. 

 

Specifying an IP address of 127.0.0.1 can be 

problematic on some machines. It is 

recommended that you use the machine‟s 

public IP address.  

 

 

snmpMaxActiveClientCount 

 

 

10 

The maximum number of network 

management applications that the SNMP 

agent can communicate with.  

 

snmpPort 

 

 

8085 

 

This is the port number that the agent uses 

for communicating with the management 

applications. Management applications must 

send SNMP requests to this port.  

 

snmpTrapPort 

 

 

snmpPort+1 

 

This is the target port number that the agent 

uses for sending SNMP notifications (traps). 

SNMP management applications should 

listen on this port number for the agent‟s 

notifications.  

 

useSnmp 
 

true 

  

Set to “false” to disable the agent.   
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Table 3 SNMP Properties 

 

The above properties are static, because they cannot be modified while the message broker is 

running; however, the following section will show you how you can override two of these static 

properties with their dynamic counterparts.     

 

The following is an example ActiveMQ 5.2 broker configuration file that illustrates how to set 

the properties listed in the table above.  

 
<!--                                 ActiveMQ Broker Configuration File   --> 

<beans 

   xmlns="http://www.springframework.org/schema/beans"         

   xmlns:amq="http://activemq.apache.org/schema/core"   

   xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"   

   xsi:schemaLocation="http://www.springframework.org/schema/beans 

   http://www.springframework.org/schema/beans/spring-beans-2.0.xsd 

   http://activemq.apache.org/schema/core  

   http://activemq.apache.org/schema/core/activemq-core.xsd"> 

 

 

   <!-- Allows us to use system properties as variables in this configuration file --> 

    <bean class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer"> 

        <property name="locations"> 

            <value>file:${activemq.base}/conf/credentials.properties</value> 

        </property>       

    </bean>   

 

  <broker xmlns="http://activemq.org/config/1.0" brokerName="secprototype"  

       dataDirectory="${activemq.base}/data" plugins="#monitor"> 

 …  
  </broker> 

 

  <bean id="monitor" class="com.ttm.activemq.monitor.MonitorPlugin"> 

      <property name="propertiesFile" value="c:\temp\myMonitor.properties"/> 

      <property name="snmpHostName" value="127.37.78.98"/> 

      <property name="snmpPort" value="9000"/>  

      <property name="snmpTrapPort" value="9050"/>  

      <property name="snmpCommunity" value="myCommunity"/>  

      <property name="snmpMaxActiveClientCount" value="50"/>      
  </bean>   

 

   <camelContext id="camel" xmlns="http://camel.apache.org/schema/spring"> 

         <package>com.acme.monlets</package>         

   </camelContext>  

   

   

http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
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</beans>  

 

 

 

By default, the SNMP agent is enabled.  The agent is dependent on JMX; therefore, setting the 

ActiveMQ broker‟s useJmx configuration attribute to “false” (see example below) will disable 

the agent. If you intend to use the SNMP agent, make sure useJmx is not set to “false”. The 

default setting for useJmx is “true”.   
 

<broker xmlns="http://activemq.apache.org/schema/core" useJmx="false" brokerName="mybroker"> 

     … 

</broker> 

 

 

 

10.4.1 SNMP Notifications 

 

When enabled, AMon‟s SNMP agent generates a notification (trap) when the hosting ActiveMQ 

message broker starts and stops. These notifications include information such as the message 

broker‟s name, machine name, IP address, date and time the notification was generated, etc. 

Please refer to the AMon SNMP MIB for a full description of the notifications and all other 

SNMP-related attributes.  

 

By default, the agent will send notifications to the “activemq” community on the local or hosting 

machine.  See the SnmpPropertiesTable for details on how to change these static default settings. 

However, via the Properties File, AMon allows you to override this static default behavior with a 

dynamic list of community names and hosts that are to receive the notifications. Here‟s how it is 

done.  

 

1. Add the “monitor.snmp.trap.communities” property to the properties file and assign it a 

comma-separated list of community names. 

2. For each community name that is assigned to the “monitor.snmp.trap.communities” 

property, add a “monitor.snmp.trap.<community name>.hosts” property to the properties 

file and assign the property a list of host names or IP addresses.   

 

So by adding those properties to the AMon properties file, you identify the communities and 

their host names or IP addresses that will be the target of the agent‟s notifications (traps). This 

will also be the target list for those Monlets that are generating notifications through 

AMon’s SNMP Camel Endpoint.  
 

Here‟s an example properties file  

 

monitor.snmp.trap.communities= comm1, comm2, comm3 

monitor.snmp.trap.comm1.hosts= host1, host2, host3 

monitor.snmp.trap.comm2.hosts= host4, host5, host6 

monitor.snmp.trap.comm3.hosts= 123.56.45.67, host8, host9 
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Please note that specifying the properties in the Properties File will override the default static 

values (i.e., community of “activemq” and the local machine’s IP address); therefore, if you would 

like to continue to include the default values, you will need to specify them in the list. Also, 

specifying an IP address of 127.0.0.1 can be problematic on some machines. It is recommended 

that you use the machine’s public IP address.  

   

 

11 The Management Console    

AMon adheres to the JMX standard and as such, can be managed via any JMX client; the most 

popular of which is the JConsole.  Along with managing properties, as described in the previous 

section, you can also „stop‟ and „start‟ AMon through the JMX client. Stopping AMon disables 

the publishing of all event message types. Starting AMon re-enables the publishing of AMon 

event messages types as dictated by the current set of Monitor-specific properties (see previous 

section).   

If the SNMP agent has been enabled, you will see references to AMon‟s SNMP-related MBeans 

in the JConsole‟s MBean tab screen (see picture below). These MBeans are called, 

“TTM_ACTIVEMQ_MIB”,  “TTM_ACTIVEMQ_MIB_Amq”, and “snmp”. Please note that 

the „operations‟ associated with these MBeans are not implemented and thus you will get an 

error screen if and when you invoke any operations associated with these MBeans.    

 

 

 

12 VirtualMachine Object 

This section lists and describes the get methods that are made available through the „vm‟ MEL 

variable. This variable is a reference to an AMon object that is called VirtualMachine or VM for 

http://java.sun.com/javase/6/docs/technotes/guides/management/jconsole.html
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short. The purpose of this object is to give the Monlet developer access to real-time information 

for the hosting Java virtual machine.   

  

getDaemonThreadCount 

public int getDaemonThreadCount() 

The current number of live daemon threads.  

 

getTotalStartedThreadCount 

public long getTotalStartedThreadCount() 

The total number of threads created and also started since the Java virtual machine started.  

 

getPeakThreadCount 

public int getPeakThreadCount() 

The peak live thread count since the Java virtual machine started or peak was reset.  

 

getThreadCount 

public int getThreadCount() 

The current number of live threads including both daemon and non-daemon threads.  

 

getUsedHeapMemory 

public long getUsedHeapMemory() 

The current memory usage of the heap that is used for object allocation, in bytes. The heap consists of one 

or more memory pools. The used and committed size of the returned memory usage is the sum of those 

values of all heap memory pools whereas the init and max size of the returned memory usage represents the 

setting of the heap memory which may not be the sum of those of all heap memory pools. The amount of 

used memory in the returned memory usage is the amount of memory occupied by both live objects and 

garbage objects that have not been collected, if any.  

 

getMaxHeapMemory 

public long getMaxHeapMemory() 

The maximum amount of memory in bytes that can be used for memory management. This method returns 

-1 if the maximum memory size is undefined. This amount of memory is not guaranteed to be available for 

memory management if it is greater than the amount of committed memory. The Java virtual machine may 

fail to allocate memory even if the amount of used memory does not exceed this maximum size.  

 

getCommittedHeapMemory 

public long getCommittedHeapMemory() 

The amount of memory in bytes that is committed for the Java virtual machine to use. This amount of 

memory is guaranteed for the Java virtual machine to use.  

 

getInitHeapMemory 

public long getInitHeapMemory() 
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The amount of memory in bytes that the Java virtual machine initially requests from the operating system 

for memory management. This method returns -1 if the initial memory size is undefined.  

 

getUsedNonHeapMemory 

public long getUsedNonHeapMemory() 

The amount of used non-heap memory in bytes.  

 

getMaxNonHeapMemory 

public long getMaxNonHeapMemory() 

The maximum amount of memory in bytes that can be used for memory management. This method returns 

-1 if the maximum memory size is undefined. This amount of memory is not guaranteed to be available for 

memory management if it is greater than the amount of committed memory. The Java virtual machine may 

fail to allocate memory even if the amount of used memory does not exceed this maximum size.  

 

getCommittedNonHeapMemory 

public long getCommittedNonHeapMemory() 

The amount of memory in bytes that is committed for the Java virtual machine to use. This amount of 

memory is guaranteed for the Java virtual machine to use.  

 

getInitNonHeapMemory 

public long getInitNonHeapMemory() 

The amount of memory in bytes that the Java virtual machine initially requests from the operating system 

for non-heap memory management. This method returns -1 if the initial memory size is undefined.  

 

getUptime 

public long getUptime() 

The uptime of the Java virtual machine in milliseconds.  

 

getStartTime 

public long getStartTime() 

The start time of the Java virtual machine in milliseconds. This method returns the approximate time when 

the Java virtual machine started.  

 

getFreeMemory 

public long getFreeMemory() 

The amount of free memory in the Java Virtual Machine. Calling the gc method may result in increasing 

the value returned by freeMemory.  

 

getTotalMemory 

public long getTotalMemory() 

The total amount of memory in the Java virtual machine. The value returned by this method may vary over 

time, depending on the host environment. Note that the amount of memory required to hold an object of 

any given type may be implementation-dependent.  
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getMaxMemory 

public long getMaxMemory() 

The maximum amount of memory that the Java virtual machine will attempt to use. If there is no inherent 

limit then the value Long.MAX_VALUE will be returned.  

 

getSpecificationVersion 

public double getSpecificationVersion() 

The version of the spec that the current VM adheres to.  

 

getSpecName 

public java.lang.String getSpecName() 

The Java virtual machine specification name. This method is equivalent to 

System.getProperty("java.vm.specification.name").  

 

getSpecVendor 

public java.lang.String getSpecVendor() 

The Java virtual machine specification vendor. This method is equivalent to 

System.getProperty("java.vm.specification.vendor").  

 

getSpecVersion 

public java.lang.String getSpecVersion() 

The Java virtual machine specification version. This method is equivalent to 

System.getProperty("java.vm.specification.version").  

 

getOSName 

public java.lang.String getOSName() 

The operating system name. This method is equivalent to System.getProperty("os.name").  

 

getOSArch 

public java.lang.String getOSArch() 

The operating system architecture. This method is equivalent to System.getProperty("os.arch").  

 

getOSVersion 

public java.lang.String getOSVersion() 

The operating system version. This method is equivalent to System.getProperty("os.version").  

 

getVmName 

public java.lang.String getVmName() 

The Java virtual machine implementation name. This method is equivalent to 

System.getProperty("java.vm.name").  
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getVmVendor 

public java.lang.String getVmVendor() 

The Java virtual machine implementation vendor. This method is equivalent to 

System.getProperty("java.vm.vendor").  

 

getVmVersion 

public java.lang.String getVmVersion() 

The Java virtual machine implementation version. This method is equivalent to 

System.getProperty("java.vm.version").  

 

getProcessCpuTime 

public long getProcessCpuTime() 

The CPU time used by the process on which the Java virtual machine is running in nanoseconds. The 

returned value is of nanoseconds precision but not necessarily nanoseconds accuracy. This method returns -

1 if the the platform does not support this operation.  

 

getSystemLoadAverage 

public double getSystemLoadAverage() 

The system load average for the last minute. The system load average is the sum of the number of runnable 

entities queued to the available processors and the number of runnable entities running on the available 

processors averaged over a period of time. The way in which the load average is calculated is operating 

system specific but is typically a damped time-dependent average. Unavailable prior to Java 6. If the load 

average is not available, a negative value is returned. This method is designed to provide a hint about the 

system load and may be queried frequently. The load average may be unavailable on some platform where 

it is expensive to implement this method.  
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