

 Copyright 2009, Total Transaction Management

 www.ttmsolutions.com

ActiveMQ Monitor

A Monitoring System

For

ActiveMQ 5.3

User Guide

Total Transaction Management, LLC
570 Rancheros Drive, Suite 140

San Marcos, CA 92069

760-591-0273
www.ttmsolutions.com

http://www.ttmsolutions.com/

Revision 2.0.0 ActiveMQ Monitor

 Copyright 2009, Total Transaction Management

 www.ttmsolutions.com

i

Table of Contents

1 INTRODUCTION .. 1

2 ACTIVEMQ’S DEFAULT ADVISORY SYSTEM ... 1

3 THE AMON MONITORING SYSTEM ... 2

3.1 MONLET CONTAINER ... 2
3.1.1 The AMon Plugin Module... 3
3.1.2 The Monitoring Expression Language (MEL) ... 5
3.1.3 Apache Camel .. 7

3.2 SNMP AGENT AND MIB ... 8

4 THE ANATOMY OF A MONLET .. 8

4.1 THE BASICS.. 8
4.2 A DUMMY MONLET .. 9
4.3 SENDING AMON EVENTS TO A SEDA QUEUE .. 10
4.4 USING THE MEL ... 11
4.5 MONITORING THE SIZE OF AN ACTIVEMQ QUEUE .. 16
4.6 A MONLET THAT SENDS SNMP NOTIFICATIONS ... 22
4.7 COMPILING YOUR MONLETS ... 24
4.8 A WARNING .. 24

5 THE MEL ... 24

5.1 EVENT TYPES AS CONSTANTS .. 25
5.2 VARIABLES ... 26
5.3 METHODS ... 35
5.4 ASYNCHRONOUS PROCESSING ... 37

6 THE INTERVAL TIMER ... 37

7 SNMP CAMEL ENDPOINT .. 38

7.1 SNMP LOGGINGNOTIFICATION ... 38
7.2 SNMP MONITORNOTIFICATION.. 41

8 JMX CAMEL NOTIFICATION ENDPOINT ... 44

9 INSTALLING AMON ... 48

9.1 INSTALLING THE AMON FILES .. 48
9.2 LOADING AMON INTO THE ACTIVEMQ MESSAGE BROKER ... 48
9.3 LOADING YOUR MONLETS INTO THE ACTIVEMQ MESSAGE BROKER ... 50
9.4 EXAMPLE MONLETS .. 53

10 CONFIGURING AMON ... 53

10.1 PROPERTIES FILE ... 53
10.2 JMX CLIENT .. 57
10.3 LOG4J MONITORING ... 57
10.4 SNMP AGENT ... 58

10.4.1 SNMP Notifications .. 61

11 THE MANAGEMENT CONSOLE .. 62

12 VIRTUALMACHINE OBJECT ... 62

getDaemonThreadCount ... 63
getTotalStartedThreadCount ... 63
getPeakThreadCount ... 63
getThreadCount ... 63
getUsedHeapMemory .. 63
getMaxHeapMemory... 63
getCommittedHeapMemory .. 63
getInitHeapMemory .. 63
getUsedNonHeapMemory ... 64
getMaxNonHeapMemory .. 64
getCommittedNonHeapMemory ... 64
getInitNonHeapMemory .. 64
getUptime .. 64
getStartTime .. 64
getFreeMemory ... 64
getTotalMemory .. 64
getMaxMemory ... 65
getSpecificationVersion ... 65
getSpecName ... 65
getSpecVendor ... 65
getSpecVersion .. 65
getOSName .. 65
getOSArch .. 65
getOSVersion ... 65
getVmName ... 65
getVmVendor ... 66
getVmVersion .. 66
getProcessCpuTime .. 66
getSystemLoadAverage ... 66

Revision 2.0.0 ActiveMQ Monitor

 Copyright 2009, Total Transaction Management

 www.ttmsolutions.com

1

1 Introduction

It is important that enterprise-class infrastructure software systems, like the ActiveMQ message

broker, provide system administrators with a mechanism through which they can monitor the

overall health and performance of that system. Without a monitoring system in-place, the

reliability, high-availability, and performance of the system, as a whole, are compromised. This

guide describes the feature-functionality of such a monitoring system for ActiveMQ 5.3. The

monitoring system is referred to as the “ActiveMQ Monitor” or “AMon” for short.

2 ActiveMQ’s Default Advisory System

The ActiveMQ message broker does provide an out-of-the-box monitoring system that

comprises a series of “Advisory” topics and the advisory messages that the message broker

publishes to those topics. However, this advisory system is static in nature, because the system‟s

set of advisory topics and event messages cannot be customized and/or extended by the end-user

without having to make changes to ActiveMQ‟s core components.

Advisory messages can be thought of as events that inform your management clients of certain

conditions that have already occurred within the ActiveMQ message broker. ActiveMQ

management clients can thus monitor the message broker by subscribing to the Advisory topics

and processing the messages that are read from those topics. However, the advisory system does

not allow you to monitor the ActiveMQ message broker such that you can detect if a particular

runtime state is beginning to reach a critical point. For example, the advisory system does not

allow you to set certain thresholds against memory, threads, message queues, etc.

Starting with version 5.2 of ActiveMQ, this advisory system covers some 26 different events.

More information on this system can be found here. Here is a sampling of the types of events

that are generated by the advisory system.

o Consumers, producers, and connections starting and stopping

o Temporary destinations being created and destroyed

o Messages expiring on topics and queues

o Brokers sending messages to destinations with no consumers.

o Connections starting and stopping

o No consumer is available to process messages being sent on a Topic or Queue

o Slow queue or topic consumer

o Fast queue or topic producer

o Discarded message (e.g., expired message) from queue or topic

o Message consumed from queue or topic

o Message delivered to broker

o A usage resource is full

o A slave broker has taken over for a master.

http://activemq.apache.org/advisory-message.html

Revision 2.0.0 ActiveMQ Monitor

 Copyright 2009, Total Transaction Management

 www.ttmsolutions.com

2

3 The AMon Monitoring System

AMon is a monitoring system that is specifically designed for the ActiveMQ message broker.

The system comprises two primary modules: Monlet Container and SNMP Agent.

3.1 Monlet Container

AMon does not perform the actual monitoring of an ActiveMQ message broker. What AMon

provides is a container or framework that facilitates the rapid development and deployment of

one or more user-defined ActiveMQ monitoring agents, or “Monlets” as they are referred to in

this document. The AMon container and the Monlets that it hosts are embedded within an

ActiveMQ message broker process. The container and its Monlets combine to provide a

powerful and flexible monitoring system for ActiveMQ.

A Monlet is an end-user defined component that comprises one or more conditional expressions

and their corresponding actions; the Monlet invokes the actions if and when the conditional

expressions are TRUE. You can also view the conditional expressions as predicate functions that

accept one or more variables with the variables‟ values representing the runtime state of the

message broker.

In general, the conditions are designed to test the runtime or operational state of those objects

that comprise the ActiveMQ message broker. Unlike ActiveMQ‟s default advisory system, the

AMon container gives its Monlets direct access to all of the message broker‟s runtime object

hierarchies. The broker comprises many objects and their properties; therefore, there are also

many conditions that can be defined and monitored. Here are just a couple of examples of the

types of Monlets and the objects that they can monitor.

1. Resource Monlet – one that tests whether a particular object, which represents a resource

(e.g., memory, queue, etc.), has breached a threshold and invokes an action if the threshold is

breached. The action can be invoking a script, firing off an email, or raising an SNMP

notification
1
.

2. Audit Monlet – one that tests whether a message that is being routed through the broker

meets some sort of condition (e.g., includes some user-defined property that has been

assigned a particular value), and if the condition is met the contents of the message can be

written to an audit log.

AMon also allows Monlets to test conditions associated with the broker‟s hosting Java Virtual

Machine (JVM). For example, a Monlet can test whether the number of active threads within the

JVM or its memory heap size has breached a certain threshold.

So unlike ActiveMQ‟s default Advisory system, AMon is a framework that:

1
 AMon provides the facilities that allow Monlets to generate SNMP notifications (a.k.a., traps)

Revision 2.0.0 ActiveMQ Monitor

 Copyright 2009, Total Transaction Management

 www.ttmsolutions.com

3

 Allows end-users to define their own ActiveMQ broker-embedded monitoring agents

(Monlets)

 Gives the Monlets the ability to monitor all aspects of the ActiveMQ message broker‟s

runtime state

 Gives them the capability to perform a myriad of different actions in response to one or more

conditional expressions evaluating to TRUE.

AMon maintains a clean separation between the Monlets and the broker objects that they are

monitoring. This separation is provided by a combination of the following:

 Event messages that are published by the AMon plugin module, which is the AMon core

component or engine.

 AMon‟s default monitoring expression language (MEL)

 The Apache Camel integration framework‟s routing Domain Specific Language (DSL).

The above items all combine to make developing Monlets relatively straightforward and allows

the AMon system as a whole to be extensible and flexible. The following three sections describe

the above three items in more detail.

Along with the Java programming language, the Monlet developer will need to have a basic

understanding of Apache Camel and the Unified Expression Language (UEL).

The AMon product package includes example “quick start” Monlets, which are designed to serve

as examples and help developers ramp-up quickly on Monlet development.

3.1.1 The AMon Plugin Module

AMon‟s core component or engine is installed as an ActiveMQ message broker plugin;

therefore, the AMon plugin is included in the message broker‟s main processing event chain.

Inclusion in the processing event chain allows the AMon plugin to participate in the processing

of events that occur within the ActiveMQ message broker. The AMon plugin‟s responsibility is

not to process these events, but to publish event messages that correspond to each of these

processing events. Other portions of the AMon framework deliver these event messages to the

end-users‟ Monlets (much more on this later).

The event messages that are published by the AMon plugin are similar to the ActiveMQ advisory

system‟s event messages. That is, both message types are published in response to a processing

event (e.g., connection created, connection removed, message arrived, message expired, etc.) that

has occurred within the message broker. All together, there are 33 AMon broker processing

events. Through an external properties file, the AMon plugin is dynamically configured to

publish messages that correspond to all, none, or any subset of these events. Refer to Event

Types as Constants for a complete listing of all the AMon event types.

The AMon core also introduces two events that are not associated with broker processing events.

The first event is generated whenever the ActiveMQ message broker writes a message to its log

http://camel.apache.org/book-in-one-page.html
http://java.sun.com/javaee/5/docs/tutorial/doc/bnahq.html

Revision 2.0.0 ActiveMQ Monitor

 Copyright 2009, Total Transaction Management

 www.ttmsolutions.com

4

file (ACTIVEMQ_HOME/data/activemq.log) with a severity or priority of WARN or higher.

The second event is generated via a configurable interval timer with a one millisecond

resolution. These two events and the timer are further described in later sections of this guide.

One important distinction between the AMon event message and ActiveMQ‟s advisory event

message is that an AMon event message is an object whose reference is communicated to a

Monlet via direct method invocation (DMI), whereas an advisory event message is designed to

be transmitted as a JMS message across the network to remote ActiveMQ advisory clients. This

difference gives the AMon event message a distinct advantage, because it can and does provide

direct references to the message broker‟s runtime object hierarchy. Having direct references to

the broker‟s object hierarchy provides an invaluable source of information from which many

different conditions and thus types of Monlets can be defined.

So, an AMon event message should be viewed as a portal or vehicle through which Monlets test

the operational state of the broker at the time a processing event occurs.

Figure 1 AMon Monlets and Event Message

A Monlet is not precluded from sending JMS messages in response to one or more of its

conditions returning TRUE; therefore, a Monlet can also act as a source of advisory messages

destined to remote advisory or management clients. In other words, one action associated with a

condition can be to send a JMS message to a remote management client. This is one way in

which AMon complements ActiveMQ‟s advisory system.

Event Message

Message Broker Object Hierarchies

A
c

ti
o

n
A

c
ti

o
n

A
c

ti
o

n

Monlets

C
o

n
d

it
io

n
C

o
n

d
it

io
n

C
o

n
d

it
io

n

Revision 2.0.0 ActiveMQ Monitor

 Copyright 2009, Total Transaction Management

 www.ttmsolutions.com

5

3.1.2 The Monitoring Expression Language (MEL)

The MEL is an extension of the Unified Expression Language (UEL), which is the expression

language used within Java Server Pages (JSPs). The MEL, which was developed for the AMon

project, is used by AMon end users to define their Monlets‟ conditional statements or predicates.

AMon depends on a Java implementation of the UEL that is called the Java Unified Expression

Language or JUEL for short. JUEL provides a lightweight and efficient Java implementation of

the UEL. The JUEL leverages the JavaBeans architecture/standard to access objects and their

properties. Most if not all of ActiveMQ‟s runtime objects adhere to the JavaBeans standard,

which makes them conducive to accessing from the JUEL.

The JUEL extension that defines MEL is specifically designed to facilitate access to the message

broker‟s objects. The MEL includes variables that are references to message broker objects,

properties that can be used to dynamically configure Monlets, and utility methods.

Recall that a Monlet subscribes to AMon event messages. By the time an event message has

been delivered to a Monlet, the AMon framework will have created a MEL context for that event

message. This MEL context includes the binding of MEL variables to the broker objects that are

referenced via the event message. The context also includes MEL-specific methods/functions

and properties.

http://java.sun.com/javaee/5/docs/tutorial/doc/bnahq.html
http://juel.sourceforge.net/
http://oreilly.com/catalog/javabeans/chapter/ch01.html

Revision 2.0.0 ActiveMQ Monitor

 Copyright 2009, Total Transaction Management

 www.ttmsolutions.com

6

Figure 2 The MEL Context and AMQ Object Hierarchies

This is a very simple example of a MEL conditional expression (predicate) that is found within a

Monlet.

${destination.name = = „TEST.Q‟}

The above expression is a condition that tests whether an ActiveMQ destination object has been

assigned the name of „TEST.Q‟. Underneath the covers, AMon has assigned the „destination‟

variable a reference to an ActiveMQ Destination object. That object‟s getName() method is then

invoked to return the name of the Destination object. Any of the Destination object‟s „get‟ and

„is‟ methods can be invoked in this fashion. Some of the Destination object‟s „get‟ methods can

return other objects whose „get‟ and „is‟ methods also can be accessed. Thus the „destination‟

variable gives your Monlet access to various object hierarchies within the ActiveMQ message

broker.

As stated in the UEL web page, the UEL supports what is referred to as immediate and deferred

evaluation of expressions. The MEL only supports immediate evaluation; therefore, only the

“${}” syntax, and not the “#{}” syntax, can be used to define MEL conditional expressions.

Event Message

Message Broker Object Hierarchies

A
c

ti
o

n
A

c
ti

o
n

A
c

ti
o

n

Monlets

C
o

n
d

it
io

n
C

o
n

d
it

io
n

C
o

n
d

it
io

nMEL Context

Object

References

Variable

Variable

Properties,

Methods

&

Variables

http://activemq.apache.org/maven/activemq-core/apidocs/org/apache/activemq/broker/region/Destination.html
http://java.sun.com/javaee/5/docs/tutorial/doc/bnahq.html

Revision 2.0.0 ActiveMQ Monitor

 Copyright 2009, Total Transaction Management

 www.ttmsolutions.com

7

Here‟s another MEL example that illustrates how you can traverse an object hierarchy tree.

${destinationStatistics.messages.count >= 100}

In the above MEL conditional expression, the destinationStatistics.getMessages().getCount()

method invocation chain is invoked, which returns the number of messages that are currently

residing in the Destination. In the example, the condition tests positive if the number of messages

is equal to or exceeds 100.

A MEL conditional expression is tested whenever the Monlet receives an AMon-published event

message (more on this later).

So in some respects, a Monlet is somewhat analogous to a JEE servlet. A servlet adheres to a

well-defined API through which it receives HTTP request packets; the packets are dispatched to

the servlet by the JEE web container. In similar fashion, a Monlet adheres to a well-defined

interface, which in this case is in the form of a combination of Java domain specific language

(DSL) and expression language. And it is through this interface that a Monlet receives and

processes AMon event packets.

3.1.3 Apache Camel

Apache Camel is a powerful, Spring-based integration framework that is primarily used to

implement the enterprise integration patterns defined in Gregor Hohpe and Bobby Woolf‟s book

titled, “Enterprise Integration Patterns”. One of the unique features of Camel is that it offers a

„routing‟ Java Domain Specific Language (DSL) that is used by Camel end-users to:

 Quickly implement all sorts of messaging patterns (filters, content-based routers, splitters,

recipient lists, message enrichers, message transformers, etc) or “Routes” as they are also

referred to.

 Interface to a myriad of different endpoints/components that Camel supports. These

components can also serve as potential Monlet „actions‟.

The other nice thing about Camel‟s Java DSL is that it supports many different scripting and

“expression” languages that are used for implementing filters and content based routers. Camel

also allows you to very easily introduce your own language, which is what the AMon project has

done with MEL.

A Monlet is a Camel Route that utilizes a slightly extended version of Camel‟s routing Java

DSL. A Monlet is a subclass of the com.ttm.activemq.monitor.Monlet abstract super class,

which in turn is a subclass of the Camel RouteBuilder super class. The reason a Monlet directly

extends the Monlet class and not Camel‟s RouteBuilder class will become apparent as you read

through the guide.

Camel‟s Java DSL is combined with the MEL to facilitate the quick development and

deployment of Monlets. Monlet developers will have to learn the basics of Camel‟s routing Java

http://camel.apache.org/book-in-one-page.html
http://www.enterpriseintegrationpatterns.com/
http://camel.apache.org/components.html

Revision 2.0.0 ActiveMQ Monitor

 Copyright 2009, Total Transaction Management

 www.ttmsolutions.com

8

DSL, as well as the JUEL and MEL. These are not difficult subjects. You are encouraged to visit

the Apache Camel web site and/or download the PDF manual to learn more about Camel. This

guide assumes that you have a basic understanding of Camel.

So the combination of Camel‟s Java DSL and the MEL facilitate the quick development of

Monlets. By leveraging Camel, Monlet developers can also quickly implement many different

event message design patterns (e.g., content-based routers, recipient lists, delayers, etc.).

Subsequent sections of this guide will show you how to combine the Camel DSL and the MEL to

create Monlets.

3.2 SNMP Agent and MIB

AMon includes an embedded SNMP v2 Agent and accompanying Management Information

Base (MIB). These components allow ActiveMQ to be monitored by SNMP-capable

management systems. The MIB, which is included in the AMon product archive file, lists and

describes all the ActiveMQ attributes that can be monitored via AMon‟s SNMP agent. Please

refer to the MIB for a complete description of all the attributes.

AMon‟s SNMP agent also generates SNMP notifications (a.k.a., traps) and gives Monlets the

capability to generate notifications via the Camel SNMP endpoint that AMon makes available to

Monlets. See the SNMP Camel Endpoint section of the guide for examples of how Monlets can

take advantage of this endpoint (component) to generate SNMP v2 notifications.

The SNMP Agent section of the guide describes how to configure the agent. The agent is

dependent on JMX; therefore, setting the ActiveMQ broker‟s useJmx configuration attribute

to “false” (see example below) will disable the agent. If you intend to use the SNMP agent,

make sure useJmx is not set to “false”. The default setting for useJmx is “true”.

<broker xmlns="http://activemq.apache.org/schema/core" useJmx="false" brokerName="mybroker">

 …

</broker>

4 The Anatomy of a Monlet

In this section we‟ll take a closer look at the Monlet and its structure.

4.1 The Basics

To recap, a Monlet is a monitoring agent or component that:

http://camel.apache.org/book-in-one-page.html
http://camel.apache.org/manual.html

Revision 2.0.0 ActiveMQ Monitor

 Copyright 2009, Total Transaction Management

 www.ttmsolutions.com

9

 Is defined and developed by the end-user

 Adheres to the AMon container‟s MEL and Camel‟s Java DSL

 Subscribes to AMon event messages

 Monitors one or more ActiveMQ runtime objects

 Invokes one or more actions as a result of monitoring the runtime objects

 Is embedded within the ActiveMQ message broker

 Is a Camel Route

A Monlet is a Java object class that must extend the com.ttm.activemq.monitor.Monlet abstract

super class. The one abstract method within the Monlet super class is the configure()
2
 method,

and this method must be implemented by the Monlets that extend the super class.

A Monlet runs within the same JVM as the message broker; therefore, the Monlet developer

should use caution and not design resource intensive Monlets. In other words, the Monlet should

not include actions that will overly compete with the broker for valuable resources.

4.2 A Dummy Monlet

This guide provides a lot of example Monlet code
3
 and we‟ll start things off with the simplest

one of all, which depicts what amounts to a dummy Monlet, because it does absolutely nothing.

However, it is a good starting point from which we can begin to describe the overall structure of

a Monlet.

package com.acme.monlets;

import com.ttm.activemq.monitor.Monlet;

import org.apache.camel.Processor;

import org.apache.camel.Exchange;

/**

 * A very basic Monlet that does nothing

 */

public class MyMonlet extends Monlet {

 public void configure() {

 // does nothing

 }

}

The first thing to note is the three import statements, which are the minimum required import

statements. Next, note how you must extend the Monlet super class and implement the configure

2
The Monlet class extends Camel‟s RouteBuilder class, which is where the abstract configure() method is defined.

3
 The sample code in this document is provided on an "as is" basis for illustrative purposes only and as such should

not be considered production-ready code.

http://camel.apache.org/maven/camel-core/apidocs/org/apache/camel/builder/RouteBuilder.html

Revision 2.0.0 ActiveMQ Monitor

 Copyright 2009, Total Transaction Management

 www.ttmsolutions.com

10

method, which in the above example does absolutely nothing. The Monlet‟s configure method is

invoked when the Monlet first gets loaded by the corresponding Camel context‟s class loader.

All of this occurs during the ActiveMQ message broker‟s initialization phase.

Okay, so we‟ve built our first, albeit dummy, Monlet. Now let‟s start adding some intelligence

one step at a time.

4.3 Sending AMon Events to a Seda Queue

In this next block of code, we‟ve added some intelligence to our dummy Monlet by adding this

one line of Java DSL code, “monitor().to(“seda:router”)”.

package com.acme.monlets;

import com.ttm.activemq.monitor.Monlet;

import org.apache.camel.Processor;

import org.apache.camel.Exchange;

/**

 * A very basic Monlet that does nothing

 */

public class MyMonlet extends Monlet {

 public void configure() {

 // Subscribe to AMon events, then pipe the events to a seda queue with the name, “router”.

 // All Monlets subscribe to AMon events via the „monitor‟ DSL verb, which is an extension to

 // the Camel DSL‟s repertoire of verbs.

 monitor().to("seda:router");

 }

}

However, this one simple line of code does a lot so let‟s take it apart and describe everything it

does for us. First, it introduces the Camel Java DSL and a couple of its verbs
4
 (“monitor” and

“to”). The “monitor” verb is the extension to the DSL for the AMon product. This verb is used

by the Monlet to subscribe to and consume AMon event messages; therefore, you must have at

least one Monlet in your Camel context invoke this verb in order to receive AMon event

messages. Whether each and every Monlet subscribes to AMon event messages or only one

subscribes, depends on how you design your Monlets within a Camel context (more on this

later).

The AMon event messages are delivered synchronously to the Monlet. In essence, the AMon

container issues a call to the monitor verb‟s underlying logic to deliver the event message. It is

important to also note that the AMon container is an extension of the ActiveMQ message broker.

4
 A DSL „verb‟ is a Java method that is statically imported by the Monlet super class.

Revision 2.0.0 ActiveMQ Monitor

 Copyright 2009, Total Transaction Management

 www.ttmsolutions.com

11

This means that the AMon container / message broker has given execution control to the Monlet;

therefore, it is critically important that the Monlet quickly return control to the calling AMon

container. This is accomplished by the “to” verb, which redirects the event messages so they are

asynchronously processed in a separate thread (or threads) of execution. In this case, the “to”

verb places the message in a “seda:” Camel endpoint component, which maps to a Java

BlockingQueue (not to be confused with a JMS or ActiveMQ queue). To learn why the term

“seda” is used, click here. In the example above, the seda blocking queue is called “router”.

The “monitor().to(“seda:router”)” DSL statement implements our first messaging pattern, which is a

simple pipe that consumes event messages from the AMon container and pipes them into a Java

BlockingQueue called “router”. You can assign any name to a seda queue (Camel endpoint) and

the name “router” has been chosen, because as you‟ll soon see our next Monlet sample code will

include a content-based router that processes the messages from the “seda:router” processing

queue.

Camel‟s Java DSL is expressed using what is referred to as the “fluent builder syntax”. With this

syntax, you stack methods that are separated with the dot character. In the above example, the

„monitor‟ verb represents the consumer that consumes event messages and then hands the

messages to the producer, which is represented by the „to‟ verb. The producer places the

messages in the seda blocking queue called, “router”.

All the Monlets that you deploy to a particular Camel context can inter-communicate with one

another via the seda queues. So for example, your Camel context may comprise a Monlet whose

sole purpose is to consume AMon event messages and place those messages in a “seda:router”

endpoint. A different Monlet within the same Camel context can then read messages from the

“seda:router” endpoint for subsequent processing. So the seda queues are a form of inter-Monlet

communication mechanism for those Monlets that reside within the same Camel context.

Monlets cannot communicate across Camel contexts.

So you‟re now probably asking how we are going to process those messages that are being piped

into the asynchronous blocking queue called, “router”. To address that question, we have to

define another messaging pattern that reads event messages from the “router” blocking queue.

4.4 Using the MEL

In this next block of Monlet source code we introduce the MEL and use it in conjunction with

the DSL to construct a simple content-based router messaging pattern for our Monlet. This router

reads messages from the “router” queue and routes the messages based on their event type.

Figure 1 below is a pictorial representation of our content based router.

http://camel.apache.org/seda.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/BlockingQueue.html
http://www.eecs.harvard.edu/~mdw/proj/seda/

Revision 2.0.0 ActiveMQ Monitor

 Copyright 2009, Total Transaction Management

 www.ttmsolutions.com

12

Figure 3 Content Based Router

The router is also acting as a message filter, because it discards all AMon event messages types

that it is has no interest in.

Below is the source code for the corresponding Monlet. Note how the MEL is used to define and

test a condition, which in this case tests the event message type. The MEL must always be used

within a Camel „language‟ clause as follows.

language(MEL, “${UEL expression}”)

This Monlet also introduces you to the „from‟ verb, which is used by the Monlet to subscribe to

and read from the seda queues. The „from‟ verb can be used to subscribe to a myriad of different

Camel endpoint components; click here to see the full list. The AMon-specific „monitor‟ verb is

an extension of the „from‟ verb. The „to‟ verb is used to send or produce messages to these same

endpoint components. The code also introduces you to the „choice‟, „when‟, „otherwise‟, and

„end‟ verbs, which allow you to construct a conditional statement much like an “if then else if”

like conditional statement. To learn more about Camel and its Java DSL, visit the Apache Camel

web site and and/or download Camel‟s PDF manual.

The comments within the example Monlet source code provide additional information, so please

make sure to read the comments.

package com.acme.monlets;

import com.ttm.activemq.monitor.Monlet;

router queue

add_destination

add_connection

remove_connection

router and filter

http://activemq.apache.org/camel/components.html
http://camel.apache.org/book-in-one-page.html
http://camel.apache.org/manual.html

Revision 2.0.0 ActiveMQ Monitor

 Copyright 2009, Total Transaction Management

 www.ttmsolutions.com

13

import org.apache.camel.Processor;

import org.apache.camel.Exchange;

/**

 * This Monlet first consumes AMon events, then uses a content-based router to filter

 * out all but 3 AMon event types. The „to‟, „from‟, „when‟, etc verbs are part of the Camel

 * DSL. All Monlets must extend the Monlet super class and implement the configure

 * method.

 */

public class MyMonlet extends Monlet {

 public void configure() {

 // Subscribe to AMon events, then pipe the events to the Monlets content-based router.

 // All Monlets subscribe to AMon events via the „monitor‟ DSL verb, which is an

 // extension to the Camel DSL‟s repertoire of verbs.

 monitor().to("seda:router");

 // This is the Monlet‟s content based router that routes to processors based on AMon

 // event types. Note how this particular router only allows a subset of AMon event types to

 // be passed on to the subsequent processors. The block of code that comprises the router

 // illustrates the use of Camel‟s routing DSL in combination with the MEL.

 // The „from‟, „when‟, „to‟, „otherwise‟, „language‟, and „end‟ verbs pertain to the DSL,

 // while the „eventType == …‟ strings are MEL expressions.

 from("seda:router").

 choice().

 when().language(MEL,"${eventType == ADD_DESTINATION}").

 to("seda:add_destination").

 when().language(MEL,"${eventType == ADD_CONNECTION}").

 to("seda:add_connection").

 when().language(MEL,"${eventType == REMOVE_CONNECTION}").

 to("seda:remove_connection").

 otherwise().

 to("seda:ignore").

 end();

 // The „otherwise‟ verb is optional. If you leave it out, all unmatched messages will be

 // dropped.

 // This processor will be given the add destination event types

 from("seda:add_destination").

 process(new Processor() {

 public void process(Exchange exchange) throws Exception {

 // do some sort of processing here

 }

Revision 2.0.0 ActiveMQ Monitor

 Copyright 2009, Total Transaction Management

 www.ttmsolutions.com

14

 });

 // This processor will be given the add connection event types

 from("seda:add_connection").

 process(new Processor() {

 public void process(Exchange exchange) throws Exception {

 // do some sort of processing here

 }

 });

 // This processor will be given the remove connection event types

 from("seda:remove_connection").

 process(new Processor() {

 public void process(Exchange exchange) throws Exception {

 // do some sort of processing here

 }

 });

 // All other event types can be put in the bit bucket.

 from("seda:ignore");

 }

}

In the above example, all the logic is contained within one Monlet. However, you can split the

logic across multiple Monlets. For example, one Monlet can be responsible for implementing the

content-based router logic while other Monlets can be responsible for subscribing to their

respective seda queues. The following snippet of code depicts a Monlet whose sole purpose is to

process messages that arrive at its seda queue.

package com.acme.monlets;

import com.ttm.activemq.monitor.Monlet;

import org.apache.camel.Processor;

import org.apache.camel.Exchange;

/*

 * This is a Monlet that reads from a seda queue and relies on another Monlet w/in the

 * same Camel context to subscribe to AMon event messages and place those messages

 * in its seda queue.

 */

public class AddDestinationMonlet extends Monlet {

 public void configure() {

 from("seda:mySedaQueue ").

Revision 2.0.0 ActiveMQ Monitor

 Copyright 2009, Total Transaction Management

 www.ttmsolutions.com

15

 process(new Processor() {

 public void process(Exchange exchange) throws Exception {

 // do some sort of processing here

 }

 });

 }

}

Take special note that a „from‟ verb that reads from a seda queue will run within its own

dedicated thread of execution; therefore, to prevent too much thread proliferation, make wise

use of statements like „from(seda:…)‟.

One technique for cutting down on the „from(seda:…)‟ verb clause is to use a „choice‟ without

adding an „otherwise‟; therefore, any unmatched exchanges will be dropped by default. If you

elect to not use an „otherwise‟, you may notice the following warning message being written to

the console when the broker starts.

WARN ChoiceType - No otherwise clause was specified for a choice block -- any unmatched

exchanges will be dropped

Another technique is to place the processing logic within the „when‟ clause. For example,

…

from("seda:mySedaQueue").

 choice().

 // The processor within this „when‟ clause will be invoked if the event message type

 // is of type MSG_DELIVERED or MSG_CONSUMED

 when().language(MEL,"${eventType == MSG_DELIVERED || " +

 "eventType == MSG_CONSUMED }").

 process(new Processor() {

 public void process(Exchange exchange) throws Exception {

 // do some processing here…

 }}).

 // The processor within this „when‟ clause will be invoked if the event message type

 // is of type ADD_CONNECTION

 when().language(MEL,"${eventType == ADD_CONNECTION}").

 process(new Processor() {

 public void process(Exchange exchange) throws Exception {

 // do some processing here…

 }}).

 end();

Revision 2.0.0 ActiveMQ Monitor

 Copyright 2009, Total Transaction Management

 www.ttmsolutions.com

16

…

If you prefer to have an exception for an unmatched exchange, you can add a throwFault to the

otherwise. For example

...otherwise().throwFault("No matching when clause found on choice block");

4.5 Monitoring the Size of an ActiveMQ Queue

This next Monlet takes things a lot further by actually monitoring a broker resource, but let‟s

first describe how the Monlet works and what it monitors.

1. It will monitor the „size‟ attribute for a queue called, “TEST.Q”.

2. It monitors the queue size each time a message is added to or removed from the queue.

3. A high and low water mark have been specified for the queue size attribute.

4. It will invoke an action (processor) only if:

a. the high-water mark is breached w/out a previous breach occurring at the high-water

mark

b. the lower-water mark is breached AND there has been a previous breach of the high-

water mark. When this condition occurs the monitor is reset.

In the time diagram below, the monitor will invoke the processor (action) at T1 and T2. The

monitor‟s state will also be reset at T2.

H

QueueSize

Time

L

L – Low water mark

H – High water mark

T1 T2

Revision 2.0.0 ActiveMQ Monitor

 Copyright 2009, Total Transaction Management

 www.ttmsolutions.com

17

In the time diagram below, the monitor does not invoke any functions, because the high-water

mark was never breached.

What follows are a couple of source code examples for the previously described Monlet. The

first example illustrates how the Monlet utilizes a series of filters and content-based routers.

However, this series of filters and routers results in several „from‟ verbs, so the second example

illustrates how you can collapse everything into one „from‟ verb.

package com.acme.monlets;

import com.ttm.activemq.monitor.Monlet;

import org.apache.camel.Processor;

import org.apache.camel.Exchange;

/**

 * This Monlet monitors a queue called “TEST.Q” and invokes actions whenever the number of

 * pending messages in the queue enters a high or low water mark.

 */

public class Monlet4 extends Monlet {

 // Used to maintain state

 private boolean crossedIntoHighWaterMark = false;

 public void configure() {

 // Capture all AMon event message types. All Monlets subscribe to AMon events via the

 // „monitor‟ DSL verb, which is an extension to the Camel DSL‟s repertoire of verbs.

H

QueueSize

Time

L

L – Low water mark

H – High water mark

Revision 2.0.0 ActiveMQ Monitor

 Copyright 2009, Total Transaction Management

 www.ttmsolutions.com

18

 monitor().to("seda:check_event_type");

 // This Monlet is only interested in two events. Those being when the broker has

 // received a message from a producer or when the broker has dispatched a message to a

 // consumer. All other event messages will not contain the information that this Monlet

 // is interested in.

 from("seda:check_event_type").choice().

 when().language(MEL,"${eventType == MSG_DELIVERED || " +

 "eventType == MSG_CONSUMED}").

 to("seda:check_q_name").

 end(); // the end for the when clause

 // Okay, we‟ve now filtered out all message types except the two we‟re interested in.

 // Now lets filter out all message types that are not associated with the queue that

 // we‟re interested in. In other words, lets capture event messages associated only with

 // the queue called 'TEST.Q'. Note that only event types of the type that we‟re interested

 // in has the „destination‟ variable mapped to the broker‟s destination HashMap.

 from("seda:check_q_name").choice().

 when().language(MEL,"${destination.name == 'TEST.Q'}").

 to("seda:check_queue_size").

 end(); // the end for the when clause

 // Lets now check the queue‟s size and determine if the queue is in the high or low water

 // mark range. We don‟t care if it is in between the two ranges.

 from("seda:check_queue_size"). choice().

 // if we're at or above the high water mark, route to the 'high' seda q

 when().language(MEL,"${destination.destinationStatistics.messages.count >= 100}").

 to("seda:high").

 // if we're in the low water mark range, route to the „low‟ seda queue

 when().language(MEL,"${destination.destinationStatistics.messages.count <= 50}").

 to("seda:low").

 // else it is in between the two and we don‟t care

 end(); // the end for the when clause

 // The queue size is in the high water mark - if we had not previously crossed it send an

 // alert and set the high water mark flag

 from("seda:high").process(new Processor() {

 public void process(Exchange exchange) throws Exception {

 System.out.println("In the high water mark");

 if(!crossedIntoHighWaterMark){

 crossedIntoHighWaterMark = true;

 // we've crossed into the high water so invoke an action, which in this case

 // simply prints out a message

 System.out.println("WARNING: high water mark has been breached");

Revision 2.0.0 ActiveMQ Monitor

 Copyright 2009, Total Transaction Management

 www.ttmsolutions.com

19

 }

 }}); //end this Monlet route

 // we're in the low water mark

 from("seda:low").process(new Processor() {

 public void process(Exchange exchange) throws Exception {

 // reset the highwater flag since we've crossed back into low water mark and

 // invoke some action, , which in this case is to simply print out a message

 if(crossedIntoHighWaterMark){

 crossedIntoHighWaterMark = false;

 System.out.println("Low water mark has been breached");

 }

 }}); //end this Monlet route

 }

}

This is the shortened version of Monlet4, note how all the logic is now contained within one

from verb or clause.

package com.acme.monlets;

import com.ttm.activemq.monitor.Monlet;

import org.apache.camel.Processor;

import org.apache.camel.Exchange;

public class Monlet4 extends Monlet {

 private boolean crossedIntoHighWaterMark = false;

 @Override

 public void configure() {

 // Capture AMon event message types

 monitor().to("seda:Monlet4");

 // This Monlet is only interested when a message has arrived from a

 // producer or when the broker has dispatched a message to a consumer.

 from("seda:Monlet4").

 choice().

 when().language(MEL,"${(eventType == MSG_CONSUMED || " +

Revision 2.0.0 ActiveMQ Monitor

 Copyright 2009, Total Transaction Management

 www.ttmsolutions.com

20

 "eventType == MSG_DELIVERED) && destination.name == 'TEST.Q' &&" +

 "destination.destinationStatistics.messages.count >= 100}").

 process(new Processor() {

 // we're in the high water mark - if we had not previously crossed it

 // send an alert and set the high water mark flag

 public void process(Exchange exchange) throws Exception {

 System.out.println("In the high water mark area");

 if (!crossedIntoHighWaterMark) {

 crossedIntoHighWaterMark = true;

 // we've crossed into the high water so invoke an action, which in this case

 // simply prints out a message

 System.out.println("WARNING - High water mark has been breached");

 }

 }

 }).

 when().language(MEL,"${(eventType == MSG_CONSUMED || " +

 "eventType == MSG_DELIVERED) && destination.name == 'TEST.Q' &&" +

 "destination.destinationStatistics.messages.count <= 50}").

 process(new Processor() {

 // we're in the low water mark

 public void process(Exchange exchange) throws Exception {

 // reset the highwater flag since we've crossed back into low water mark and

 // invoke some action, , which in this case is to simply print out a message

 if (crossedIntoHighWaterMark) {

 crossedIntoHighWaterMark = false;

 System.out.println("Low water mark has been breached");

 }

 }

 }).

 end();

 }

}

In the previous two examples, note the use of the Processor object‟s „process‟ method. It is in

this method that some form of message processing takes place like transforming the event

message to an email message, setting a header for a subsequent filter, or setting an Exchange

property, etc. Here‟s a snippet from a simple Monlet that serves as a further example; please

refer to the comments for additional information.

…

/**

 Let‟s assume that a condition above has tested positive and that the message has been sent

Revision 2.0.0 ActiveMQ Monitor

 Copyright 2009, Total Transaction Management

 www.ttmsolutions.com

21

 to this seda queue for processing.

**/

from("seda:low").process(new Processor() {

 // This is where we do the message processing like transform the message (if necessary)

 // prior to sending it to the next Camel endpoint (e.g., smtp, snmp, file, etc). The

 // Exchange object is always passed from one endpoint to the next in the processing

 // pipeline.

 public void process(Exchange exchange) throws Exception {

 // Save the AMon BaseEvent object (event message) that arrived in case we want

 // to use it for processing

 BaseEvent baseEvent = (BaseEvent) = exchange.getIn().getBody();

 // Do some processing here…

 // Transform the body prior to sending it to the next endpoint. In this case, we‟re

 // simply transforming the BaseEvent object to a simple String object.

 exchange.getIn().setBody("Transformed body");

 // You can also set message headers for the next endpoints to receive the Exchange

 exchange.getIn().setHeader(“key”, “value”);

 // The Exchange object also allows you to set and get Exchange properties.

 // These properties, as well as message headers, can then be referenced by the next

 // endpoint in the pipeline. Here are some examples.

 Map exchangeProps = exchange.getProperties();

 String someProp = exchange.getProperty(“key”);

 exchange.setProperty("key", "value");

 }

 // After processing and transforming the message, send it to the next

 // Camel endpoint. Note that this is optional and that the Monlet may have terminated

 // with the previous process method.

 }).to("some other endpoint");

…

In the above example, the action is to process the message, transform the message, and then send

it to the next endpoint in the processing pipeline. The next endpoint can be any one of Camel‟s

multitude of supported endpoints (e.g., smtp, ibatis, file, etc.).

http://camel.apache.org/maven/camel-core/apidocs/org/apache/camel/Exchange.html
http://camel.apache.org/maven/camel-core/apidocs/org/apache/camel/Exchange.html
http://camel.apache.org/maven/camel-core/apidocs/org/apache/camel/Exchange.html
http://camel.apache.org/maven/camel-core/apidocs/org/apache/camel/Exchange.html

Revision 2.0.0 ActiveMQ Monitor

 Copyright 2009, Total Transaction Management

 www.ttmsolutions.com

22

4.6 A Monlet that Sends SNMP Notifications

Of special note is the SNMP endpoint that AMon provides and is described in the SNMP Camel

Endpoint section of the guide. This next, shortened version of Monlet4, illustrates how a

message is sent to AMon‟s SNMP Camel endpoint whenever one of the queue‟s thresholds has

been breached. When the SNMP endpoint is sent a message, it will generate a SNMP notification

(trap). Also note the reliance on AMon‟s external Properties File to make the Monlet

dynamically configurable. Please refer to the comments for additional information.

package com.acme.monlets;

import com.ttm.activemq.monitor.Monlet;

import org.apache.camel.Processor;

import org.apache.camel.Exchange;

public class Monlet4 extends Monlet {

 private boolean crossedIntoHighWaterMark = false;

 @Override

 public void configure() {

 // Capture AMon event message types and forward them to the seda queue called,

 // “Monlet4”.

 monitor().to("seda:Monlet4”);

 /* **********

 This Monlet is only interested when a message has arrived from a producer or when the

 broker has dispatched a message to a consumer. It is also relying on the following

 external properties:

 monlet4QName – This property specifies the name of the queue to monitor

 maxThreshold – This property specifies the maximum threshold for the queue

 minThreshold – This property specifies the minimum threshold for the queue

 Values for the above properties can be dynamically assigned. In other words,

 you do not have to stop and start the broker to change their values. See the

 Properties File section for more information on AMon properties.

 ********** */

 from("seda: Monlet4").

 choice().

 when().language(MEL, "${(eventType == MSG_CONSUMED || " +

 "eventType == MSG_DELIVERED) && destination.name == " +

 "props.monlet4QName && " +

Revision 2.0.0 ActiveMQ Monitor

 Copyright 2009, Total Transaction Management

 www.ttmsolutions.com

23

 "destination.destinationStatistics.messages.count >= " +

 "props.maxThreshold}").

 process(new Processor() {

 // we're in the high water mark - if we had not previously crossed it

 // send a SNMP trap and set the high water mark flag

 public void process(Exchange exchange) throws Exception {

 if (!crossedIntoHighWaterMark) {

 crossedIntoHighWaterMark = true;

 // Let the SNMP producer know to send the trap

 exchange.setProperty("sendSnmpTrap", "true");

 Monlet.setSnmpTrapMonitorPropertyName(exchange,"messages.count");

 Monlet.setSnmpTrapMonitorMessage(exchange,

 "WARNING high water mark was breached");

 // forward on the BaseEvent object

 exchange.getOut().setBody(exchange.getIn().getBody());

 }

 }

 }).to("seda: Monlet4.check4trap").

 when().language(MEL, "${(eventType == MSG_CONSUMED || " +

 "eventType == MSG_DELIVERED) && destination.name == " +

 "props.monlet4QName && " +

 "destination.destinationStatistics.messages.count <= " +

 "props.minThreshold}").

 process(new Processor() {

 // we're in the low water mark

 public void process(Exchange exchange) throws Exception {

 // reset the highwater flag since we've crossed back into low water

 if (crossedIntoHighWaterMark) {

 crossedIntoHighWaterMark = false;

 // Let the SNMP producer know to send the trap

 exchange.setProperty("sendSnmpTrap", "true");

 // These two statics methods are used setting notification attributes.

 // These methods are described in the SNMP Camel Endpoint section

 // of the guide.

 Monlet.setSnmpTrapMonitorPropertyName(exchange,"messages.count");

 Monlet.setSnmpTrapMonitorMessage(exchange,

 "The low water mark was breached");

 // forward on the BaseEvent object

 exchange.getOut().setBody(exchange.getIn().getBody());

 }

 }

Revision 2.0.0 ActiveMQ Monitor

 Copyright 2009, Total Transaction Management

 www.ttmsolutions.com

24

 }).to("seda: Monlet4.check4trap").

 end();

 // Via the use of a „filter‟, this seda consumer is checking to see if the message is to

 // be forwarded on to the SNMP endpoint, which raises a SNMP notification (trap)

 from("seda: Monlet4.check4trap").filter(property("sendSnmpTrap").

 isEqualTo("true")).to("snmp:trap");

 }

}

4.7 Compiling Your Monlets

Compiling Monlets requires use of JDK 1.5 or 1.6. If using the NetBeans IDE, also make sure

the “Source/Binary Format” is also set to 1.5 or 1.6.

The following libraries (jar files) need to be configured into the project (if using an IDE and/or

Maven), or must be present in the CLASSPATH (if compiling using javac from the command

line):

amon-2.0.x jar

camel-core-2.0.x.jar

jaxb-api-2.1.jar

4.8 A Warning

Do not use the Camel mock endpoint in your Monlets. Doing so will result in memory leakage.

5 The MEL

The MEL is an AMon-specific extension of the UEL or JUEL. In this section, we describe the

variables, constants, and methods that define the MEL.

By the time a Monlet receives an AMon event message, a MEL context has been created for that

message. This MEL context binds variables to the event message‟s instance properties, supplies

constants, and supplies methods. All of these variables, constants, and methods can then be

referenced within the Monlet‟s MEL conditional expression or predicate. Let‟s go back to one of

the previous example Monlets that implemented the following content-based router message

pattern.

http://camel.apache.org/mock.html

Revision 2.0.0 ActiveMQ Monitor

 Copyright 2009, Total Transaction Management

 www.ttmsolutions.com

25

 from("seda:router").

 choice().

 when().language(MEL,"${eventType == ADD_DESTINATION}").

 to("seda:add_destination").

 when().language(MEL,"${eventType == ADD_CONNECTION}").

 to("seda:add_connection").

 when().language(MEL,"${eventType == REMOVE_CONNECTION}").

 to("seda:remove_connection").

 end();

And in particular, let‟s take a closer look at this statement.

language(MEL,"${eventType == ADD_DESTINATION}").

A Monlet uses the „language‟ Camel DSL clause to define a conditional expression. The MEL

string constant tells Camel to use the MEL language and everything inside the “${}” string

defines the MEL conditional expression. In the above examples, the „eventType‟ is a variable

that is assigned the value of the message‟s eventType property and ADD_DESTINATION is a

constant that has been mapped to the corresponding event message type.

5.1 Event Types as Constants

The table below lists and briefly describes all the events that can be reported to the Monlet via

the eventType variable. The event‟s type (e.g., ADD_CONNECTION) is also a MEL constant

that is used by Monlets to test for that particular event type. Examples of these constants and

how they are referenced within a MEL expression were provided in the previous sections.

Please note that, by default, AMon will not generate any event messages. You must decide what

event types you‟d like your Monlets to be informed of and then enable the publishing of the

corresponding event messages. Use caution when choosing what events to enable, because

enabling too many or all events may result in an overall performance degradation. See

Configuring AMon for details on how to enable and disable event publishing.

Event Type Description

ADD_BROKER A remote Broker connects to this broker

ADD_CONNECTION
An ActiveMQ client (consumer or producer) is establishing a

connection with this broker.

ADD_CONSUMER A consumer client is being added to this broker

ADD_DESTINATION

A destination is being added to this broker. Usually, this event

occurs as a side-effect of sending a message to a destination that

does not exist yet.

ADD_PRODUCER A producer client is being added to this broker

Revision 2.0.0 ActiveMQ Monitor

 Copyright 2009, Total Transaction Management

 www.ttmsolutions.com

26

ADD_SESSION A JMS session has been established with this broker

BEGIN_TRX A transaction is beginning

COMMIT_TRX A transaction is being committed

FAST_PRODUCER The broker has detected a fast producer.

FORGET_TRX A transaction is being forgotten

LOG_ENTRY

A log4j message has been written to the ActiveMQ log file.

Please see Log4J Monitoring for more details on how to set up

and configure AMon to publish this event.

MASTER_BROKER This broker, who was previously a slave, is now a master broker.

MSG_ACK Acknowledge the receipt of a message by a client

MSG_CONSUMED

A message in a queue has been consumed by a consumer client.

Note that consuming a message from a topic does not generate

this event type.

MSG_DELIVERED A message has been delivered to this broker.

MSG_DISCARDED

Called when a message is discarded (e.g. running low on

memory). This will happen only if the policy is enabled (e.g. non

durable topics)

MSG_EXPIRED A message has expired

POST_DISPATCH A message has been dispatched to a consumer

PRE_DISPATCH A message is about to be dispatched to a consumer

PREPARE_TRX A transaction is being prepared for commit

REMOVE_BROKER A remote broker disconnects from this broker

REMOVE_CONNECTION A client has disconnected from this broker.

REMOVE_CONSUMER A consumer client is being removed from this broker

REMOVE_DESTINATION A destination is being removed from this broker.

REMOVE_PRODUCER A producer client is being removed from this broker.

REMOVE_SESSION A JMS session has been removed from this broker

REMOVE_SUBSCRIPTION A durable subscription is being removed from this broker.

ROLLBACK_TRX A transaction is being rolled back

SEND_TO_DLQ A message is being sent to the dead letter queue

SLOW_CONSUMER The broker has detected a slow consumer

TIMER_INTERVAL
AMon‟s configurable interval event timer has expired (see The

Interval Timer).

USAGE_FULL Called when a broker resource reaches a limit

Table 1 AMon Event Types

5.2 Variables

In the previous examples, we saw how the value of the „eventType‟ String variable is tested

against a String constant. However, in some cases the MEL defines variables whose

corresponding data types are ActiveMQ objects (i.e., the variables are object references). When a

variable‟s data type is an ActiveMQ object, your Monlet can invoke all the standard JavaBean

Revision 2.0.0 ActiveMQ Monitor

 Copyright 2009, Total Transaction Management

 www.ttmsolutions.com

27

„get‟ and „is‟ methods associated with that particular object; this allows your Monlet to acquire

the values associated with that object‟s instance properties. In some cases, one or more of the

object‟s „get‟ methods will return a reference to another ActiveMQ object, whose instance

property values you then access through its „get‟ and „is‟ methods. This is how you can walk

through the message broker‟s object hierarchy tree to acquire information regarding the broker‟s

operational or runtime state.

For convenience, the MEL provides you with some variables that reference an ActiveMQ object

that is more than one level deep within the object tree. As you‟ll see later in the section, one such

example is the „destinationStatistics‟ variable.

The table below lists all the variables that the MEL presents to the Monlet developer and also

provides examples of how to reference the „get‟ and „is‟ object methods. You‟ll note that the

broker, brokerService, brokerView, eventType, props, and vm variables are valid for all event

types, while the others are valid only for a subset of all the event types. When a MEL variable is

an object reference, you will be referred to that object‟s JavaDoc URL for a complete list of that

object‟s „get‟ and „is‟ methods. An index to all ActiveMQ classes can be found here.

MEL Variables That Are

Object References

Message Broker Objects

http://activemq.apache.org/maven/activemq-core/apidocs/allclasses-noframe.html

Revision 2.0.0 ActiveMQ Monitor

 Copyright 2009, Total Transaction Management

 www.ttmsolutions.com

28

Variable Name Description

activeMQDestination

This variable is a reference to the ActiveMQDestination object and is

only valid for the following event types: ADD_DESTINATION and

REMOVE_DESTINATION.

Usually, the ADD_DESTINATION event is invoked as a side-

effect of sending a message to a destination that does not exist yet.

Here are a couple of example use cases for this object.

Is the destination a topic?

language(MEL,"${amqDestination.topic}")

Is the destination temporary?

language(MEL,"${amqDestination.temporary}")

Is it a composite destination?

language(MEL,"${amqDestination.composite}")

broker

This variable is a reference to an AMon specific object that both

implements and extends the ActiveMQ Broker interface; the

variable is valid for all event types.

Example usage:

Is the broker‟s name set to „mybroker‟?

language(MEL,"${broker.brokerName == „mybroker‟}")

Note how the string literal „mybroker‟ must be surrounded by single

quotes.

brokerInfo

This variable is a reference to the BrokerInfo object, and it is only

valid for the ADD_BROKER and REMOVE_BROKER event

types.

brokerService
This variable is a reference to the BrokerService object, and it is

valid for all event types.

brokerView

This variable is a reference to the BrokerView object and is valid for

all event types. The BrokerView object implements the

BrokerViewMBean interface. Through this variable, your Monlet can

access all the „get‟ and „is‟ methods associated with this interface.

Example usage:

http://activemq.apache.org/maven/activemq-core/apidocs/org/apache/activemq/command/ActiveMQDestination.html
http://activemq.apache.org/maven/activemq-core/apidocs/org/apache/activemq/broker/Broker.html
http://activemq.apache.org/maven/activemq-core/apidocs/org/apache/activemq/command/BrokerInfo.html
http://activemq.apache.org/maven/activemq-core/apidocs/org/apache/activemq/broker/BrokerService.html
http://activemq.apache.org/maven/activemq-core/apidocs/org/apache/activemq/broker/jmx/BrokerView.html
http://activemq.apache.org/maven/activemq-core/apidocs/org/apache/activemq/broker/jmx/BrokerViewMBean.html

Revision 2.0.0 ActiveMQ Monitor

 Copyright 2009, Total Transaction Management

 www.ttmsolutions.com

29

Has the total message dequeue count for this broker exceeded

60000?

 language(MEL,"${brokerView.totalDequeueCount > 60000}")

Is this broker„s name set to „mybroker‟ and is it a slave broker?

 language(MEL,

 "${brokerView.brokerName == „mybroker‟ &&

 brokerView.slave}")

connection

This variable is a reference to the Connection object, which is valid

for the following event types: ADD_BROKER and

REMOVE_BROKER

connectionContext

This variable is a reference to the ConnectionContext object, which is

valid for all event types except the following: ADD_BROKER,

REMOVE_BROKER, MASTER_BROKER, LOG_ENTRY, and

TIMER_INTERVAL

Here is an example use case.

Does the connection pertain to an IP address of „123.45.67.89‟?

language(MEL,"${connectionContext.connection.remoteAddress ==

„123.45.67.89‟}")

From the connectionContext object, you can also get a reference to

the Connection object and it‟s ConnectionStatistics (see next

variable). From the connectionContext you can also get a reference

to the Connector object and its ConnectorStatistics.

So what‟s the difference between a Connection and Connector

object? A Connector is an object that creates and manages client

Connections that communicate to the Broker. One example of a

Connector is the „Transport Connector‟, which you may have seen

referenced in the ActiveMQ message broker‟s XML configuration

file as follows.

<transportConnectors>

 <transportConnector name="openwire" uri="tcp://localhost:61616"

 discoveryUri="multicast://default"/>

</transportConnectors>

Note that a Connector is capable of listening for and accepting

Connection requests from both clients and other brokers.

connectionInfo
This variable is a reference to the ConnectionInfo object and it is

only valid for the following event types: ADD_CONNECTION and

http://activemq.apache.org/maven/activemq-core/apidocs/org/apache/activemq/broker/Connection.html
http://activemq.apache.org/maven/activemq-core/apidocs/org/apache/activemq/broker/ConnectionContext.html
http://activemq.apache.org/maven/activemq-core/apidocs/org/apache/activemq/command/ConnectionInfo.html

Revision 2.0.0 ActiveMQ Monitor

 Copyright 2009, Total Transaction Management

 www.ttmsolutions.com

30

REMOVE_CONNECTION. Please note that the Connection that

this ConnectionInfo object pertains to can be associated with either

a client or another broker.

Here are some example use cases.

Does the connection pertain to a user by the name of „joe‟?

 language(MEL,"${connectionInfo.userName == „joe‟}")

Is the client id associated with this connection set to „client123‟?

language(MEL,"${connectionInfo.connectionId.value == „client123‟}")

Is the value of the corresponding connection id equal to „foo‟?

language(MEL,"${connectionInfo.connectionId.value == „foo‟}")

connectionStatistics

This variable is a reference to the ConnectionStatistics object, which

is valid for all event types except the LOG_ENTRY,

PRE_DISPATCH, POST_DISPATCH, MASTER_BROKER,

MSG_EXPIRED, SEND_TO_DLQ, SLOW_CONSUMER, and

TIMER_INTERVAL events.

The reference to the ConnectionStatistics objects is acquired from

the ConnectionContext object.

Example usage:

Have there been more than 1000 messages dequeued via this

connection?

language(MEL,"${connectionStatistics.dequeues.count > 1000}")

This is a convenience variable, because it can be referred to instead

of having to refer to the connection or connectionContext variables.

This is an example of a variable that is a direct reference to a couple

of layers down an object hierarchy. For example, if you used the

connectionContext variable (see above) to acquire the

connectionStatistics, you‟d end up with the following MEL string,

which is much longer than the one above.

 language(MEL,

 "${connectionContext.connection.statistics.dequeues.count > 1000}")

connectorStatistics

This variable is a reference to the ConnectorStatistics object, which is

valid for all event types except the LOG_ENTRY,

PRE_DISPATCH, POST_DISPATCH, MASTER_BROKER,

MSG_EXPIRED, SEND_TO_DLQ, SLOW_CONSUMER, and

http://activemq.apache.org/maven/activemq-core/apidocs/org/apache/activemq/broker/region/ConnectionStatistics.html
http://activemq.apache.org/maven/activemq-core/apidocs/org/apache/activemq/broker/region/ConnectorStatistics.html

Revision 2.0.0 ActiveMQ Monitor

 Copyright 2009, Total Transaction Management

 www.ttmsolutions.com

31

TIMER_INTERVAL events.

consumerBrokerExchange
This variable is a reference to the ConsumerBrokerExchange object,

which is only valid for the MSG_ACK event type.

consumerInfo

This variable is a reference to the ConsumerInfo object.

This variable is only valid for the SLOW_CONSUMER,

ADD_CONSUMER and REMOVE_CONSUMER event types.

destination

This variable is a reference to the Destination object associated with

the event. It is only valid for the following event types:

MSG_EXPIRED, MSG_CONSUMED, MSG_DELIVERED,

MSG_DISCARDED, SEND_TO_DLQ, SLOW_CONSUMER and

USAGE_FULL.

Example usage:

Is the destination associated with this event called „TEST.Q‟ ?

 language(MEL,"${destination.name == „TEST.Q‟}")

destinationStatistics

This variable is a reference to the DestinationStatistics object and it is

only valid for the following event types: MSG_EXPIRED,

MSG_CONSUMED, MSG_DELIVERED, MSG_DISCARDED,

SEND_TO_DLQ, SLOW_CONSUMER, and USAGE_FULL.

From the DestinationStatistics object you can get statistics data for

the event‟s corresponding destination.

language(MEL,"${destinationStatistics.dequeues.count > 100}")

language(MEL,"${destinationStatistics.enqueues.count > 100}")

 language(MEL,"${destinationStatistics.producers.count == 10}")

language(MEL,"${destinationStatistics.consumers.count == 0}")

This is a convenience variable, because it can be directly referred to

instead of having to acquire it via the previously described

„destination‟ variable. This is an example of a variable that is a

direct reference to an object that is a couple of layers into an object

hierarchy. For example, if you used the destination variable (see

above) to acquire the destinationStatistics, you‟d end up with the

following MEL string, which is a bit longer than the one above.

 language(MEL,

 "${destination.destinationStatistics.dequeues.count > 1000}")

eventType

This String variable will contain the value of the event message

type. It is used by Monlets to determine the event message type. See

the events table for a complete list of all event types. In the example

below, the MEL conditional expression is checking for an event

message of type of ADD_CONNECTION.

http://activemq.apache.org/maven/activemq-core/apidocs/org/apache/activemq/broker/ConsumerBrokerExchange.html
http://activemq.apache.org/maven/activemq-core/apidocs/org/apache/activemq/command/ConsumerInfo.html
http://activemq.apache.org/maven/activemq-core/apidocs/org/apache/activemq/broker/region/Destination.html
http://activemq.apache.org/maven/activemq-core/apidocs/org/apache/activemq/broker/region/DestinationStatistics.html
http://java.sun.com/javase/6/docs/api/java/lang/String.html

Revision 2.0.0 ActiveMQ Monitor

 Copyright 2009, Total Transaction Management

 www.ttmsolutions.com

32

language(MEL,"${eventType == ADD_CONNECTION }")

The ADD_CONNECTION is a constant; therefore, it does not have

to be surrounded by single quotes. However, string literals will need

to be surrounded by single quotes.

This variable is valid for all event types.

loggingEvent

This variable is a reference to a log4j LoggingEvent object, which is

only valid for LOG_ENTRY event type. Please see Log4J

Monitoring for more details on how to set up AMon to publish

LOG_ENTRY event.

AMon will monitor only those messages that are generated by the

“org.apache.activemq” package.

loggingEventMessage

This is a String object whose value is the message associated with a

LoggingEvent object. This variable is only valid for LOG_ENTRY

event types.

loggingEventPriority

This is a reference to a String object that is set to either “WARN‟,

“ERROR, or “FATAL” and represents the priority of a

LoggingEvent object. This variable is only valid for LOG_ENTRY

event types.

messageAck
This variable is a reference to the MessageAck object and it is only

valid for the MSG_ACK event type.

messageDispatch

This variable is a reference to the MessageDispatch object and it is

only valid for the following event types: PRE_DISPATCH and

POST_DISPATCH

messageReference

This variable is a reference to the MessageReference object and it is

only valid for the following event types: MSG_EXPIRED,

MSG_CONSUMED, MSG_DELIVERED, MSG_DISCARDED,

and SEND_TO_DLQ.

producerInfo

This variable is a reference to the ProducerInfo object.

This variable is only valid for the FAST_PRODUCER,

ADD_PRODUCER and REMOVE_PRODUCER event types.

props

This variable, valid for all event types, is a reference to an AMon

object that is used to contain properties that are specified via an

external properties file. More information on the use of this

variable can be found in section 10 “Configuring AMon”.

Example usage:

Let‟s assume that there exists a property in the AMon properties

object called „vmThreadCount‟ and that the property‟s value is set

to “100”. The following then asks, have the total number of threads

created and started since the Java virtual machine started reached

100 or more?

http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/spi/LoggingEvent.html
http://activemq.apache.org/maven/activemq-core/apidocs/org/apache/activemq/command/MessageAck.html
http://activemq.apache.org/maven/activemq-core/apidocs/org/apache/activemq/command/MessageDispatch.html
http://activemq.apache.org/maven/activemq-core/apidocs/org/apache/activemq/broker/region/MessageReference.html
http://activemq.apache.org/maven/activemq-core/apidocs/org/apache/activemq/command/ConsumerInfo.html

Revision 2.0.0 ActiveMQ Monitor

 Copyright 2009, Total Transaction Management

 www.ttmsolutions.com

33

 language(MEL,

 "${vm.totalStartedThreadCount >= props.vmThreadCount}")

The nice thing about using properties instead of constants is that

you can dynamically change the properties‟ values without

bouncing the message broker.

The JUEL will coerce the „vmThreadCount‟ property‟s String value

to an integer.

You can also use the bracket notation, instead of dot notation, to

access the properties. This comes in handy if the property that

you‟re accessing includes dots in its name, as this example

illustrates.

 language(MEL,"${props[„monitor.timer_interval‟] >= 5000}")

removeSubscriptionInfo
This variable is a reference to the RemoveSubscriptionInfo object,

and it is only valid for the REMOVE_SUBSCRIPTION event type.

sessionInfo

This variable is a reference to the SessionInfo object, which is only

valid for the ADD_SESSION and REMOVE_SESSION event

types.

Here is an example use case.

Is the session id set to 123456789?

language(MEL,"${sessionInfo.sessionId.value == 123456789}")

subscription
This variable is a reference to the Subscription object, and is only

valid for the SLOW_CONSUMER event type.

transactionId
This variable is a reference to the TransactionId object, and is only

valid for the *_TRX (e.g., BEGIN_TRX) event types.

usage

This variable is a reference to the Usage object and it is only valid

for the USAGE_FULL event. The USAGE_FULL event also

provides references to the ConnectionContext and Destination

objects.

vm

This variable is a reference to an AMon object that is called

“VirtualMachine” and it is valid for all event types.

The purpose of this variable is to give the Monlet developer access

to real-time information for the hosting Java virtual machine. The

VirtualMachine object essentially wraps the ManagementFactory

object and also makes available some of the information that is

acquired via the Runtime object. Please see VirtualMachine Object

for a complete list and description of all the „get‟ methods that are

made available via this vm variable.

http://activemq.apache.org/maven/activemq-core/apidocs/org/apache/activemq/command/RemoveSubscriptionInfo.html
http://activemq.apache.org/maven/activemq-core/apidocs/org/apache/activemq/command/SessionInfo.html
http://activemq.apache.org/maven/activemq-core/apidocs/org/apache/activemq/broker/region/Subscription.html
http://activemq.apache.org/maven/activemq-core/apidocs/org/apache/activemq/command/TransactionId.html
http://activemq.apache.org/maven/activemq-core/apidocs/org/apache/activemq/usage/Usage.html
http://java.sun.com/javase/6/docs/api/java/lang/management/ManagementFactory.html
http://java.sun.com/javase/6/docs/api/java/lang/Runtime.html

Revision 2.0.0 ActiveMQ Monitor

 Copyright 2009, Total Transaction Management

 www.ttmsolutions.com

34

Here is an example use case.

Have the total number of threads created and started since the Java

virtual machine started reached 100 or more?

language(MEL,"${vm.totalStartedThreadCount >= 100}")

Table 2. AMon Variables

The BaseEvent object is the body of the Camel „in‟ message and can be acquired via the Camel

Exchange object. Let‟s take the following sample source code, which is that of a simple Monlet

that is interested only in LOG_ENTRY events. Note how after it has detected a LOG_ENTRY

message, it sends or pipes the message to a Camel Processor object. The Processor objects must

implement the process(Exchange) method, and it uses the Exchange object to acquire the „in‟

message body, which is of type BaseEvent.

package com.acme.monlets;

import com.ttm.activemq.monitor.Monlet;

import com.ttm.activemq.monitor.event.BaseEvent;

import org.apache.camel.Processor;

import org.apache.camel.Exchange;

public class LogMonlet extends Monlet {

 @Override

 public void configure() {

 // Capture all AMon event message types. All Monlets subscribe to AMon events via

 // the „monitor‟ DSL verb, which is an extension to the Camel DSL‟s repertoire of verbs.

 monitor().to("seda:logMonlet");

 // This Monlet is interested only in LOG_ENTRY event messages, which it will pipe

 // to a Processor to extract some information regarding the logged message

 from("seda:logMonlet").choice().

 when().language(MEL,"${eventType == LOG_ENTRY}").

 process(new Processor() {

 public void process(Exchange exchange) throws Exception {

 // Get the message body, which is an AMon BaseEvent object

 BaseEvent baseEvent = (BaseEvent)exchange.getIn().getBody();

 // Now that we have the BaseEvent, we can get to all the AMon variables. So lets

 // print out some information regarding the LoggingEvent

 System.out.println("LogMonlet: Message message = " +

 baseEvent.getLoggingEventMessage());

 System.out.println("LogMonlet: Message priority = " +

 baseEvent.getLoggingEventPriority());

Revision 2.0.0 ActiveMQ Monitor

 Copyright 2009, Total Transaction Management

 www.ttmsolutions.com

35

 }}).

 end();

 }

}

So being able to access AMon variables via the BaseEvent comes in handy when creating a

Camel Processor.

The Properties File section of this guide shows you how to use the BaseEvent object within a

process() method to acquire a copy of AMon‟s dynamically configurable properties.

5.3 Methods

In previous sections, the guide describes the standard JavaBeans „get‟ and „is‟ accessor methods

that are implicitly invoked via MEL conditional expressions. For example, the MEL expression,

“${broker.brokerName}” invokes the broker object‟s getBrokerName() accessor method, which

returns the broker‟s name. Note how you do not specify the „get‟ portion of the method name and

the first character after „get‟ must be in lower case (this is in accordance with how the JUEL

takes advantage of the JavaBeans standard). One disadvantage with this JUEL approach towards

invoking the accessor methods is that you cannot pass parameters to the accessor methods.

However, the MEL does provide direct access to a few objects‟ methods that do accept input

parameters, but do not necessarily conform to the JavaBeans standard.

The first of these objects is the java.lang.String object and the following example illustrates how

you can access, from within a MEL expression, the String object‟s methods that accept input

parameters. In this example, we‟re invoking the startsWith() method, which is being used to

determine if the broker name starts with “mybroker”.

language(MEL,"${broker.brokerName.startsWith('mybroker')}")

For the above example, notice how the JUEL convention of invoking the methods is not being

followed. That is, the method‟s entire name is being supplied. Some String methods are

overloaded (i.e., there exists more than one method with the same name, but with different input

parameters). Unfortunately, the JUEL does not inform the MEL as to the number of

parameters associated with the method invocation. Therefore, the MEL always chooses the

version of the method with the least number of parameters; the startsWith() method is one

prime example.

The following snippet of Monlet source code illustrates how the eventType String object‟s

equalsIgnoreCase() method is invoked within a MEL expression. Also note how the eventType

String object is being compared to a String object whose value is specified via the

monitor.properties file. In this case, the Monlet is using a combination of method and Properties

File to determine what AMon event message type it should test.

Revision 2.0.0 ActiveMQ Monitor

 Copyright 2009, Total Transaction Management

 www.ttmsolutions.com

36

…

 from("seda:SimpleEventMonlet.check_event_type").filter().

 language(MEL,"${eventType.equalsIgnoreCase(props.simpleEvent)}").

 process(new Processor() {

 public void process(Exchange exchange) throws Exception {

 // The Camel exchange's body is of type BaseEvent

 BaseEvent baseEvent = (BaseEvent)exchange.getIn().getBody();

 LOG.info("SimpleEventMonlet: event type = " + baseEvent.getEventType());

 }

 }).end();

…

The MEL also exposes two methods that are provided by the „broker‟ variable or object. One

method is called getDestination(String name), which allows you to get a reference to a

Destination object with the specified name. Here‟s an example where a reference to a Destination

object with the name „TEST.Q‟ is being acquired in order to get statistics on that destination.

language(MEL,"${broker.getDestination('TEST.Q').destinationStatistics.messages.count > 100}")

Note how you must specify the method‟s full name.

The other „broker‟ method that is exposed is called getDestinationStatistics(String name), which

is a convenience method for accessing the Destination‟s statistics. Here‟s an example.

language(MEL,"${broker.getDestinationStatistics('TEST.Q').messages.count > 100}")

These two methods are handy to have if the Monlet has received an event message that is not

associated with any particular Destination. In such a situation, the event message‟s „destination‟

variable is not valid for the event. One such example is the timer event message, which is

described next.

The two methods described above are provided by an AMon-specific object called

MonitorBroker, which both implements and extends the ActiveMQ Broker interface. The two

methods are an extension to the Broker interface.

http://activemq.apache.org/maven/activemq-core/apidocs/org/apache/activemq/broker/region/Destination.html

Revision 2.0.0 ActiveMQ Monitor

 Copyright 2009, Total Transaction Management

 www.ttmsolutions.com

37

5.4 Asynchronous Processing

Many of the example Monlets presented thus far take advantage of seda queues in order to

asynchronously process the event messages that are published by the AMon container. And as

mentioned in chapter 4 (The Anatomy of a Monlet), the initial placement of an event message in

a seda queue is a requirement, because the Monlet must quickly return control to the calling

AMon container.

When your Monlet design incorporates a pipeline of seda queues, you should note that as an

AMon event message is forwarded across the pipeline, the operational run state of the ActiveMQ

message broker can change. Therefore, the possibility does exist that the evaluation of a MEL

conditional statement will return different values at different stages of the pipeline. For example,

the queue size associated with an ActiveMQ queue may not have breached a certain threshold at

stage 1 of the pipeline, but by the time the same event message is processed at stage 3, the queue

size may have breached the threshold.

6 The Interval Timer

AMon includes an interval timer that is configured via the “monitor.timer_interval” property.

This property, which is specified in the AMon Properties File, is used to enable or disable the

timer and also to specify the timer‟s interval time period in milliseconds.

By default, the timer is disabled; however, when it is enabled it will publish a

TIMER_INTERVAL event message every interval time period. Refer to the EventTypesTable for

a listing of all variables that are valid for timer event messages. To enable the timer, you simply

assign the “monitor.timer_interval” property an integer value greater than zero. For example, to

have your Monlets receive a TIMER_INTERVAL event message every 100 milliseconds, you

add the following line to the AMon Properties File.

monitor.timer_interval=100

If you update the property, while the message broker is active, the new property value will take

effect as soon as you save the file. To disable the timer, simply assign the property a value of

zero.

monitor.timer_interval=0

If you want to create a Monlet that monitors a resource, but does not do so via potentially high-

volume event messages (e.g., MSG_DELIVERED, MSG_CONSUMED, MSG_ACK), then it

can rely on the TIMER_INTERVAL event messages.

Revision 2.0.0 ActiveMQ Monitor

 Copyright 2009, Total Transaction Management

 www.ttmsolutions.com

38

7 SNMP Camel Endpoint

As mentioned in the SNMP Agent and MIB section of the guide, AMon includes an embedded

SNMP v2 Agent and corresponding MIB. Together, the agent and MIB are used by SNMP-

capable network management applications to monitor the agent‟s corresponding ActiveMQ

message broker. By default, the agent automatically generates or produces SNMP notifications

(a.k.a., traps) when the ActiveMQ message broker starts and stops (see SNMP Notifications).

This section of the guide describes how Monlets can also generate SNMP notifications. To send

or produce SNMP notifications, the Monlets utilize a Camel endpoint called, “snmp:trap”, which

is provided by the AMon product. This endpoint is essentially an interface that the SNMP agent

provides, via Camel, that allows the Monlets to produce SNMP notifications.

There are two types of notifications that the Monlet can produce: LoggingNotification and

MonitorNotification. The following sections describe their makeup and provide more

information on how the Monlets produce the notification via the “snmp:trap” endpoint.

7.1 SNMP LoggingNotification

This notification is issued by Monlets to notify SNMP management applications that the

ActiveMQ message broker has logged a message with a severity of WARN or higher. To achieve

this, the Monlet subscribes to the LOG_ENTRY AMon event message and simply forwards, via

the “snmp:trap” Camel endpoint, those event messages to the SNMP agent. See the Log4J

Monitoring section of the guide for more information regarding the LOG_ENTRY event and

how to set up AMon to generate these event types.

The following sample Monlet illustrates how simple it is to do this; please refer to the comments

in the example for additional information.

package com.acme.monlets;

import com.ttm.activemq.monitor.Monlet;

import com.ttm.activemq.monitor.event.BaseEvent;

import org.apache.camel.Processor;

import org.apache.camel.Exchange;

/**

 *

 * This Monlet subscribes to LOG_ENTRY event messages and pipes the received

 * messages to the SNMP agent via the “snmp:trap” endpoint/component. Upon

 * receiving a LOG_ENTRY message, the SNMP agent will generate a

 * LoggingNotification trap that includes information taken from the LOG_ENTRY

 * event message.

 *

 */

public class LogMonlet extends Monlet {

 @Override

 public void configure() {

Revision 2.0.0 ActiveMQ Monitor

 Copyright 2009, Total Transaction Management

 www.ttmsolutions.com

39

 // Capture AMon event message types and place them in the asynchronous seda

 // queue

 monitor().to("seda:LogMonlet");

 // Pipe the LOG_ENTRY event messages to the SNMP Agent who will extract

 // information from the LoggingEvent object for the correspoding LoggingNotification

 // notification

 from("seda:LogMonlet").

 choice().

 when().language(MEL, "${eventType == LOG_ENTRY}").

 to("snmp:trap").

 end();

 }

}

That‟s really all there is to a Monlet that produces a LoggingNotification. It just forwards or

pipes the LOG_ENTRY event message to the SNMP agent via the “snmp:trap” Camel endpoint.

Upon receiving the LOG_ENTRY event message, the agent uses the event message‟s reference

to the LoggingEvent object to extract all relative information that is used to build the

corresponding SNMP notification.

The following block of ASN.1 notation, which is taken from AMon‟s SNMP MIB, defines the

SNMP LoggingNotification. It gives you an idea of the information that is carried in the

LoggingNotification, and as you can see, a lot of the trap* attributes correlate back to the

LoggingEvent object.

 amqLoggingNotification NOTIFICATION-TYPE

 OBJECTS {

 trapDateTime, -- date and time stamp of the notification

 trapBrokerName, -- the broker‟s name

 trapBrokerId, -- broker id

 trapLogClassName, -- the class that generated the log entry

 trapLogFileName, -- the classes file name

 trapLogLineNumber, -- the line number w/in the file from which the log entry

 -- was generated

 trapLogMethodName, -- the name of the method that generated the log entry

 trapLogThreadName, -- the name of thread the generated the log entry

 trapLogTimeStamp, -- the time stamp associated with the log entry

 trapLogMessage, -- the log entry‟s message

 trapLogLevel, -- the severity (i.e,. WARN, ERROR, or FATAL)

 trapMachineName -- the name of the machine from which the log entry

 -- was generated

 }

 STATUS current

http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/spi/LoggingEvent.html
http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/spi/LoggingEvent.html

Revision 2.0.0 ActiveMQ Monitor

 Copyright 2009, Total Transaction Management

 www.ttmsolutions.com

40

 DESCRIPTION "Used for notifying that a message has been logged

 to the AMQ log file"

 ::= { amqTraps 1 }

The SNMP agent assigns values to the trap* attributes prior to sending the notification. The only

thing the Monlet has to do is forward the LOG_ENTRY event message to the agent.

The SNMP Notifications section of the guide shows you how to configure, via the AMon

Properties File, the hosts that are to receive the notifications. However, your Monlet can specify

its own list of hosts in addition to the ones listed in the properties file. Below is the LogMonlet

again, but this time it is specifying, via a Map object, a community called “TTMLocations” that

contains two hosts called, “DIEGO” and “TAMPA”
5
. When the SNMP agent receives the

LOG_ENTRY event message, it will check if the Monlet has specified such a Map object in the

Camel Exchange object. If the object exists in the Exchange, the agent will send the notification

to the hosts that are specified in the Map object.

Note how the Monlet uses the Monlet.setSNMPCommunityMap() static method to nail the Map

object to the Camel Exchange object prior to forwarding the LOG_ENTRY event message to the

agent.

package com.acme.monlets;

import java.util.HashMap;

import java.util.List;

import java.util.Vector;

import com.ttm.activemq.monitor.Monlet;

import com.ttm.activemq.monitor.event.BaseEvent;

import org.apache.camel.Processor;

import org.apache.camel.Exchange;

/**

 *

 * This Monlet subscribes to LOG_ENTRY event messages and pipes the received

 * messages to the SNMP agent via the “snmp:trap” endpoint/component. Upon

 * receiving a LOG_ENTRY message, the SNMP agent will generate a

 * LoggingNotification trap that includes information taken from the LOG_ENTRY

 * event message.

 *

 */

public class LogMonlet extends Monlet {

 @Override

 public void configure() {

5
 IP addresses like “123.45.67.89” are also permitted

Revision 2.0.0 ActiveMQ Monitor

 Copyright 2009, Total Transaction Management

 www.ttmsolutions.com

41

 // Capture AMon event message types and place them in the asynchronous seda

 // queue

 monitor().to("seda:LogMonlet");

 // Pipe the LOG_ENTRY event messages to the SNMP Agent who will extract

 // information from the LoggingEvent object for the correspoding LoggingNotification

 // notification

 from("seda:LogMonlet").

 choice().

 when().language(MEL, "${eventType == LOG_ENTRY}").

 process(new Processor() {

 public void process(Exchange exchange) throws Exception {

 // Create a Map containing the communities and host(s) at those communities

 // that we would like to send the trap to. This Map will be merged with the

 // community and host information (if any) that is located in the AMon

 // properties file.

 HashMap<String, List> hostMap = new HashMap<String,List>();

 Vector<String> hosts = new Vector<String>();

 hosts.add("DIEGO");

 hosts.add("TAMPA");

 hostMap.put("TTMLocations", hosts);

 // Use this static method to pass the hostMap to the SNMP agent

 Monlet.setSnmpCommunityMap(exchange, hostMap);

 // forward on the BaseEvent object

 exchange.getOut().setBody(exchange.getIn().getBody());

 }

 }). to("snmp:trap").

 end();

 }

}

7.2 SNMP MonitorNotification

The MonitorNotification is the second type of SNMP notification that a Monlet can generate,

and it is used to send general monitoring information to the SNMP management applications.

For example, a Monlet can send this notification if a particular resource‟s threshold has been

breached, a destination (queue or topic) no longer has consumers, or a particular client

application has connected with the message broker.

Revision 2.0.0 ActiveMQ Monitor

 Copyright 2009, Total Transaction Management

 www.ttmsolutions.com

42

Here is the ASN.1 notation for the MonitorNotification

amqMonitorNotification NOTIFICATION-TYPE

 OBJECTS {

 trapBrokerName,

 trapBrokerId,

 trapDateTime,

 trapMonitorPropertyName,

 trapMonitorResourceName,

 trapMonitorPropertyValue,

 trapMonitorMessage,

 trapMachineName

 }

 STATUS current

 DESCRIPTION "General purpose monitoring notification. Typical

 in response to a gauge or counter breaching a

 threshold"

 ::= { amqTraps 4 }

The SNMP agent will assign values to the trap* attributes. However, there are a handful of

attributes whose values should be specified by the Monlet before it forwards the event message

to the SNMP agent. These are the attributes with the “trapMonitor” prefix. The Monlet super

class provides a handful of static convenience methods that the Monlets use to specify the values

for the trapMonitor* attributes. The following lists and describes all the Monlet setSnmp* static

methods.

 /**

 * The monlet uses this method to specify the name of the property that triggered the

 * MonitorNotification. For example, the name can be a threshold like

 * 'maxNumberOfMessages', 'maxNumberOfConnections', or 'minNumberofThreads', etc.

 */

 public static void setSnmpTrapMonitorPropertyName(Exchange exchange,

 String propertyName);

 /**

 * The monlet uses this method to specify the the ASCII string representation

 * of the value associated with the property name that triggered this

 * notification. For example, this can be the value of a threshold that was

 * breached and caused the triggering of the MonitorNotification.

 */

 public static void setSnmpTrapMonitorPropertyValue(Exchange exchange,

 String propertyValue);

 /**

 * The monlet uses this method to associate a message with a monitor

Revision 2.0.0 ActiveMQ Monitor

 Copyright 2009, Total Transaction Management

 www.ttmsolutions.com

43

 * notification.

 */

 public static void setSnmpTrapMonitorMessage(Exchange exchange,

 String message);

 /**

 * The monlet uses this method to specify the name of the resource

 * associated with the triggering of the MonitorNotification (trap). For

 * example, the name of a queue or topic.

 */

 public static void setSnmpTrapMonitorResourceName(Exchange exchange,

 String resourceName);

 /**

 * The monlet uses this static method to nail its snmp community-host

 * map to the exchange; this will then allow the snmp agent to access

 * the optional map

 */

 public static void setSnmpCommunityMap(Exchange exchange, Map communityMap);

The Monlet must set at least one trapMonitor* attribute. If not, the following exception is

thrown.

com.ttm.activemq.snmp.camel.SnmpProducer.process(): Insufficient information to generate

meaningful snmp notification

What follows is an example of a Monlet that sends a MonitorNotification whenever it receives

any event message type. Prior to forwarding the message to the SNMP agent, it invokes the

Monlet.setSnmp* static methods to set the corresponding MonitorNotification attributes. Please

note that this is just an example of how to invoke these static methods.

package com.acme.monlets;

import java.util.HashMap;

import java.util.List;

import java.util.Vector;

import com.ttm.activemq.monitor.Monlet;

import org.apache.camel.Processor;

import org.apache.camel.Exchange;

public class SnmpMonlet extends Monlet {

 public void configure() {

Revision 2.0.0 ActiveMQ Monitor

 Copyright 2009, Total Transaction Management

 www.ttmsolutions.com

44

 // Subscribe to AMon events and forward to seda queue so that the event can be processed

 // asynchronously

 monitor().to("seda:snmp");

 from("seda:snmp").

 process(new Processor() {

 public void process(Exchange exchange) throws Exception {

 // do some sort of processing here

 Monlet.setSnmpTrapMonitorPropertyName(exchange,"somePropertyName");

 Monlet.setSnmpTrapMonitorPropertyValue(exchange,"1234");

 Monlet.setSnmpTrapMonitorResourceName(exchange,"someResourceName");

 Monlet.setSnmpTrapMonitorMessage(exchange,

 "Hello World From The SnmpMonlet");

 // forward on the BaseEvent object

 exchange.getOut().setBody(exchange.getIn().getBody());

 }

 }).to("snmp:trap");

 }

}

8 JMX Camel Notification Endpoint

AMon provides a Camel endpoint through which Monlets can send JMX notifications. To send a

JMX notification, a Monlet utilizes a Camel endpoint URI string of “jmx:notify”. This endpoint

is essentially an interface to AMon‟s “Notifier” MBean (see JConsole screenshot below), which

performs the actual sending of the notification object to the JMX clients.

Revision 2.0.0 ActiveMQ Monitor

 Copyright 2009, Total Transaction Management

 www.ttmsolutions.com

45

The screenshot above illustrates the MBean navigation tree of a JConsole session. In the tree,

note the AMon “Notifier” MBean and underneath that MBean also note the highlighted

“Notification[2]” string. The “[2]” portion of the string is a notification counter that lets you

know that you have subscribed to notifications and the number of notifications that have been

received. When you first subscribe to notifications or clear existing notifications, you have an

empty set of brackets like this, “[]”. As depicted in the screenshot below, if you do not

subscribe to notifications, the “[]” substring will not be displayed.

Revision 2.0.0 ActiveMQ Monitor

 Copyright 2009, Total Transaction Management

 www.ttmsolutions.com

46

To subscribe to notifications, simply click on “Notifications” and you will be presented with the

“Notification buffer” (see right panel in screenshot below). At the bottom of the buffer or panel,

you are presented with three buttons: Subscribe, Unsubscribe, and Clear. Click on Subscribe to

subscribe and begin to receive notifications from Monlets.

The screenshot below depicts 2 notifications that have been received by the JConsole.

Revision 2.0.0 ActiveMQ Monitor

 Copyright 2009, Total Transaction Management

 www.ttmsolutions.com

47

The “Message” column reflects the message String object that the Monlet has assigned to the

notification object‟s message attribute. The TimeStamp and SeqNum columns reflect the values

that the Monlet assigned to the notification object‟s time stamp and sequence number attributes,

respectively. If the Monlet does not assign values to these two attributes, then the Notifier will

assign values to the two attributes. The Type, Event, and Source columns have no significance.

The Monlet has the option of passing a String (Message) or AttributeChangeNotification object

to the Notifier. If it is a String object, the Notifier will create an AttributeChangeNotification

object and assigns the String to that object. It will also assign a sequence number and time stamp

value to the just-created AttributeChangeNotification object. If the Monlet creates and passes an

AttributeChangeNotification object to the Notifier, the Notifier will only ensure that the object‟s

sequence number and time stamp attributes are assigned values. If the Monlet creates an

AttributeChangeNotification object, then it also has the option of assigning a value to the

UserData attribute (see Notification).

Please refer to the JmxMonlet.java file in the com.acme.monlets package as an example of a

Monlet that sends JMX notifications. The source code for the com.acme.monlets package is

included in the AMon product archive file (see Example Monlets).

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/AttributeChangeNotification.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/Notification.html

Revision 2.0.0 ActiveMQ Monitor

 Copyright 2009, Total Transaction Management

 www.ttmsolutions.com

48

9 Installing AMon

9.1 Installing the AMon Files

Installing AMon is a relatively easy process comprising these steps.

1. Download the AMon zip (Windows) or gzip (Unix/Linux) archive file and copy it to the

target ActiveMQ machine.

2. Extract the files from the archive file into the ACTIVEMQ_HOME directory. This will place

files into the conf, docs, lib/optional, and example subdirectories.

On Unix/Linux:

cd $ACTIVEMQ_HOME

gunzip /path/to/amon-1.1.0.tar.gz

tar xvf /path/to/amon-1.1.0.tar

3. Obtain a license key file, and place the file in the ACTIVEMQ_HOME/conf directory. If you

are running an embedded broker (i.e., your application and broker are running within the

same VM), make sure to place the license file in the broker's classpath.

4. After you have developed one or more of your own Monlets, place the jar file(s) that contain

your Monlet class files into the ACTIVEMQ_HOME/lib/optional directory.

That‟s it! Installation is now complete; now we need to configure the ActiveMQ message broker

to load AMon and your Monlets on startup, which is all explained in the next section.

9.2 Loading AMon into the ActiveMQ Message Broker

To have the ActiveMQ message broker load the AMon container on startup, you must define an

AMon-specific plugin bean within the message broker‟s Spring XML configuration file (by

default ACTIVEMQ_HOME/conf/activemq.xml). There are two options you can take, with the

first being depicted in the XML listing below, which is a snippet of an ActiveMQ message

broker‟s XML configuration file. Note how the AMon bean, with an id of “monitor”, is defined

outside the <broker> element and is referenced via the <broker> element‟s “plugins” attribute.

 Option #1
<!-- ActiveMQ Broker Configuration File -->

<beans

 xmlns="http://www.springframework.org/schema/beans"

 xmlns:amq="http://activemq.apache.org/schema/core"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans-2.0.xsd

 http://activemq.apache.org/schema/core

http://www.ttmsolutions.com/Transactional_Software_Solutions/Active_Monitor_AMon.php
http://www.ttmsolutions.com/Apache_Software/amonkeyrqst.php
http://www.springframework.org/schema/beans/spring-beans-2.0.xsd

Revision 2.0.0 ActiveMQ Monitor

 Copyright 2009, Total Transaction Management

 www.ttmsolutions.com

49

 http://activemq.apache.org/schema/core/activemq-core.xsd">

 <!-- Allows us to use system properties as variables in this configuration file -->

 <bean class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer">

 <property name="locations">

 <value>file:${activemq.base}/conf/credentials.properties</value>

 </property>

 </bean>

 <broker xmlns="http://activemq.org/config/1.0" brokerName="secprototype"

 dataDirectory="${activemq.base}/data" plugins="#monitor">

 …
 <transportConnectors>

 <transportConnector name="openwire" uri="tcp://localhost:61616" />

 </transportConnectors>

 …
 </broker>

 <bean id="monitor" class="com.ttm.activemq.monitor.MonitorPlugin"/>

</beans>

That‟s it! With those two minor additions to the message broker‟s XML configuration file,

you‟ve configured the message broker to load and start AMon. The Configuring AMon section

of this document will show you how to configure AMon and the Monlets that it hosts.

The second option is depicted in the XML snippet below. With this approach, note how the

“monitor” bean is defined within the <broker> element‟s <plugins> sub-element and that it is

no longer referenced via the broker element‟s “plugins” attribute. Also note how you must

specify a name space (i.e., xmlns=”http://www.springframework.org/schema/beans”) for the

AMon or monitor bean.

Option #2
<!-- ActiveMQ Broker Configuration File -->

<beans

 xmlns="http://www.springframework.org/schema/beans"

 xmlns:amq="http://activemq.apache.org/schema/core"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans-2.0.xsd

 http://activemq.apache.org/schema/core

 http://activemq.apache.org/schema/core/activemq-core.xsd">

 <!-- Allows us to use system properties as variables in this configuration file -->

 <bean class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer">

 <property name="locations">

 <value>file:${activemq.base}/conf/credentials.properties</value>

 </property>

 </bean>

http://activemq.apache.org/schema/core/activemq-core.xsd
http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
http://activemq.apache.org/schema/core/activemq-core.xsd

Revision 2.0.0 ActiveMQ Monitor

 Copyright 2009, Total Transaction Management

 www.ttmsolutions.com

50

 <broker xmlns="http://activemq.org/config/1.0" brokerName="broker1"

 dataDirectory="${activemq.base}/data">

 <transportConnectors>

 <transportConnector name="openwire" uri="tcp://localhost:61616" />

 </transportConnectors>

 <plugins>

 <bean id="monitor"

 class="com.ttm.activemq.monitor.MonitorPlugin"

 xmlns="http://www.springframework.org/schema/beans"/>

 </plugins>

 </broker>

</beans>

When the ActiveMQ message broker successfully loads and starts the ActiveMQ message

broker, you will see the following informational messages on the broker‟s system console.

INFO MonitorPlugin - AMon License Key Is Valid

INFO MonitorPlugin - Starting SNMP

INFO MonitorPlugin - Started

You will not see the “Starting SNMP” message if you‟ve disabled the SNMP agent. You will

instead see the following message

INFO MonitorPlugin - SNMP has been disabled

If your AMon license file is not valid or has not been installed, then you will see a corresponding

error message with the “ERROR” prefix. For example, if AMon could not find the license file it

will put out this ERROR message to the console.

ERROR MonitorPlugin - Unable to locate AMon license file

If the license file has expired, AMon will put the following ERROR message out to the console.

ERROR MonitorPlugin - AMon License Key has expired

If the license key file could not be found or has expired, the ActiveMQ message broker will load

AMon, but it will not be started.

9.3 Loading Your Monlets into the ActiveMQ Message Broker

The final step in the installation process is to configure the ActiveMQ message broker to load

your Monlets when it starts up. To do this, all you have to do is define a Camel context within

Revision 2.0.0 ActiveMQ Monitor

 Copyright 2009, Total Transaction Management

 www.ttmsolutions.com

51

the ActiveMQ message broker‟s XML configuration file and assign it the one or more packages

that contain your Monlets. As an example, take a look at the following ActiveMQ message

broker‟s XML configuration file. Note in bold how a Camel context and its packages have been

defined.

<!-- ActiveMQ Broker Configuration File -->

<beans

 xmlns="http://www.springframework.org/schema/beans"

 xmlns:amq="http://activemq.apache.org/schema/core"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans-2.0.xsd

 http://activemq.apache.org/schema/core

 http://activemq.apache.org/schema/core/activemq-core.xsd">

 <!-- Allows us to use system properties as variables in this configuration file -->

 <bean class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer">

 <property name="locations">

 <value>file:${activemq.base}/conf/credentials.properties</value>

 </property>

 </bean>

 <broker xmlns=" http://activemq.apache.org/schema/core" brokerName="broker1"

 dataDirectory="${activemq.base}/data" plugins="#monitor">

 …
 <transportConnectors>

 <transportConnector name="openwire" uri="tcp://localhost:61616" />

 </transportConnectors>

 …
 </broker>

 <bean id="monitor" class="com.ttm.activemq.monitor.MonitorPlugin"/>

 <camelContext id="AmonCamel" xmlns="http://camel.apache.org/schema/spring">

 <package>com.acme.monlets</package>

 </camelContext>

</beans>

That‟s all it takes! When the broker starts, your Monlet class files are loaded by Camel and your

Monlets are ready to go.

You can also define more than one Camel context (just make sure to give them different bean

ids), each with one or more Monlet packages. Just remember that Monlets cannot communicate

with one another if they are in different Camel contexts.

http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
http://activemq.apache.org/schema/core/activemq-core.xsd

Revision 2.0.0 ActiveMQ Monitor

 Copyright 2009, Total Transaction Management

 www.ttmsolutions.com

52

If you also happen to have non-AMon related Camel contexts defined in your activemq.xml file,

make sure the AMon Camel contexts are defined after all non-AMon Camel contexts (see the

example below). Not doing so will result in spurious events being generated.

<!-- ActiveMQ Broker Configuration File -->

<beans

 xmlns="http://www.springframework.org/schema/beans"

 xmlns:amq="http://activemq.apache.org/schema/core"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans-2.0.xsd

 http://activemq.apache.org/schema/core

 http://activemq.apache.org/schema/core/activemq-core.xsd">

 <!-- Allows us to use system properties as variables in this configuration file -->

 <bean class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer">

 <property name="locations">

 <value>file:${activemq.base}/conf/credentials.properties</value>

 </property>

 </bean>

 <broker xmlns=" http://activemq.apache.org/schema/core" brokerName="broker1"

 dataDirectory="${activemq.base}/data" plugins="#monitor">

 …
 <transportConnectors>

 <transportConnector name="openwire" uri="tcp://localhost:61616" />

 </transportConnectors>

 …
 </broker>

 <bean id="monitor" class="com.ttm.activemq.monitor.MonitorPlugin"/>

 <!-- Ensure that non-AMon camelContexts are always defined prior to AMon-related

 camelContexts -->

 <camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">

 <package>org.foo.bar</package>

 <route>

 <from uri="activemq:example.A"/>

 <to uri="activemq:example.B"/>

 </route>

 </camelContext>

 <camelContext id="AmonCamel" xmlns="http://camel.apache.org/schema/spring">

 <package>com.acme.monlets</package>

 </camelContext>

</beans>

http://www.springframework.org/schema/beans/spring-beans-2.0.xsd

Revision 2.0.0 ActiveMQ Monitor

 Copyright 2009, Total Transaction Management

 www.ttmsolutions.com

53

9.4 Example Monlets

The amon-<version>.zip or .gzip archive file also includes a handful of example Monlets, which

can be found in the archive‟s example/monlets directory. See the README.TXT file for the

deployment and configuration instructions for these Monlets. The directory also includes the

corresponding source code‟s Maven project object model (pom) file, which can be used to

rebuild the example Monlets package.

10 Configuring AMon

So now that you‟ve learned how to install/load AMon and the Monlets, it is time to discuss how

to configure AMon in general. This section of the guide describes how to configure various

AMon components.

10.1 Properties File

AMon and the Monlets that it hosts are primarily configured and managed through an external

properties file. By default, this properties file is called “monitor.properties”. You can place the

file anywhere in the ActiveMQ broker‟s default class path (ACTIVEMQ_CLASSPATH), but it

is best to place it in the ACTIVEMQ_HOME /conf directory. If you would like to place the file

outside the ActiveMQ class path or change its name, use the MonitorPlugin‟s „propertiesFile‟

bean property to specify the new location and/or name. Below is a sample message broker XML

configuration file that illustrates the use of the „propertiesFile‟ property (note the text in bold).

<!-- ActiveMQ Broker Configuration File -->

<beans

 xmlns="http://www.springframework.org/schema/beans"

 xmlns:amq="http://activemq.apache.org/schema/core"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans-2.0.xsd

 http://activemq.apache.org/schema/core

 http://activemq.apache.org/schema/core/activemq-core.xsd">

 <!-- Allows us to use system properties as variables in this configuration file -->

 <bean class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer">

 <property name="locations">

 <value>file:${activemq.base}/conf/credentials.properties</value>

 </property>

 </bean>

http://www.springframework.org/schema/beans/spring-beans-2.0.xsd

Revision 2.0.0 ActiveMQ Monitor

 Copyright 2009, Total Transaction Management

 www.ttmsolutions.com

54

 <broker xmlns=" http://activemq.apache.org/schema/core" brokerName="secprototype"

 dataDirectory="${activemq.base}/data" plugins="#monitor">

 …
 </broker>

 <bean id="monitor" class="com.ttm.activemq.monitor.MonitorPlugin">

 <property name="propertiesFile" value="c:\temp\myMonitor.properties"/>
 </bean>

 <camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">

 <package>com.acme.monlets</package>

 </camelContext>

</beans>

Through the monitor properties file you:

 Control the event message types that AMon will publish. Recall that by default the

publishing of all event messages is disabled.

 Define Monlet-specific properties.

 Define SNMP-specific properties

There are two types of properties that can be defined in the properties file: Monitor and Monlet-

specific properties. Let‟s first discuss Monitor-specific properties. A property name that follows

the “monitor.<event type>” format is used to designate a Boolean property that enables/disables

the publishing of the corresponding event message type. The <event type> portion of the

property name must match one of the event types listed in the event types table (see Event Types

as Constants), but it must be in lower case. For example, let‟s suppose that you‟ve developed one

or more Monlets that would like to receive ADD_CONNECTION and

REMOVE_CONNECTION event messages. To enable the publishing of these two event

message types, define the two properties called “monitor.add_connection” and

“monitor.remove_connection” and assign them both a value of “true” as this simple monitor

properties file example illustrates.

Enable the publishing of the ADD_CONNECTION and REMOVE_CONNECTION

event message types.

monitor.add_connection=true

monitor.remove_connection=true

Please note that the entire property name must be in lower case.

Properties with the “monitor.” prefix are reserved for the AMon product.

As mentioned in a previous section, by default AMon will not publish any event messages. You

must decide what event types you‟d like your Monlets to receive and then enable the publishing

Revision 2.0.0 ActiveMQ Monitor

 Copyright 2009, Total Transaction Management

 www.ttmsolutions.com

55

of the corresponding event messages. Use caution when choosing what events to enable, because

enabling too many or all events will result in an overall performance degradation. In particular,

use caution when enabling what can easily become very “high volume” events such as

MSG_DELIVERED and MSG_CONSUMED.

Now let‟s discuss Monlet-specific properties, which can be assigned any name as long as they

don‟t conflict with the previously described Monitor-specific properties. A Monlet-specific

property is one that can be referenced within a MEL expression statement. For example, let‟s

suppose that you‟ve got the properties file defined below. It consists of two Monitor-specific

properties and two Monlet-specific properties called, “myBrokerName” and “maxThreads”.

Enable the publishing of the ADD_CONNECTION and REMOVE_CONNECTION

event message types.

monitor.add_connection=true

monitor.remove_connection=true

Monlet-specific properties

myBrokerName=fred

maxThreads=100

The “myBrokerName” property can be referenced from within a MEL expression as follows.

language(MEL,"${broker.brokerName == props.myBrokerName}")

Let‟s take a closer look at what‟s happening within the above MEL expression. The expression is

testing whether the ActiveMQ broker‟s name matches the value assigned to the

“myBrokerName” property. The “broker.brokerName” portion of the expression is using the

MEL mapped „broker‟ variable to reference the ActiveMQ Broker object‟s getBrokerName()

method and thus acquire the name of the hosting message broker. The “props.myBrokerName”

portion of the expression is using the MEL mapped „props‟ variable to reference a Map object

that contains all of the properties defined in the properties file. And in this particular case, the

“myBrokerName” property is being referenced.

Let‟s take a look at another example.

language(MEL,"${vm.totalStartedThreadCount >= props.maxThreads}")

In the above example, the MEL expression is testing whether the hosting virtual machine has

started more than 100 threads since it was first launched. In this case, the left hand portion of the

expression is using the „vm‟ MEL variable to reference the VirtualMachine Object and its

getTotalStartedThreadCount() method. And as in the previous example, the right hand portion of

the expression is once again using the MEL mapped „props‟ variable to reference the Map object

that contains all of the properties defined in the properties file. However, in this case the String

http://activemq.apache.org/maven/activemq-core/apidocs/org/apache/activemq/broker/Broker.html
http://java.sun.com/javase/6/docs/api/java/util/Map.html
http://java.sun.com/javase/6/docs/api/java/util/Map.html

Revision 2.0.0 ActiveMQ Monitor

 Copyright 2009, Total Transaction Management

 www.ttmsolutions.com

56

value of the „maxThreads‟ properties is being coerced to a type that matches the return value of

the getTotalStartedThreadCount() method.

You can also use the UEL‟s bracket notation to access the properties. This comes in handy if you

need to access a property name that includes the dot notation. For example, let‟s suppose you

wanted to access one of the monitor-specific properties (e.g., monitor.timer_interval) and you

used the dot notation, as this example illustrates.

language(MEL,"${props.monitor.timer_interval >= 5000}")

The above statement results in an error, because the MEL attempts to access the props object‟s

„monitor‟ property and then that object‟s „timer_interval‟ property; both of which do not exist.

As an alternative, you can use the bracket notation to access the property, as illustrated in this

example.

language(MEL,"${props[„monitor.timer_interval‟] >= 5000}")

If you make any changes to the properties file, while the ActiveMQ message broker is running,

AMon automatically detects that the file has been modified, reloads the file, and the new

property values take effect immediately. In this way, AMon allows you to dynamically re-

configure your Monlets.

Your Monlet can also access the properties from within its Processor object‟s „process‟ method.

Below is a snippet of Monlet code that illustrates how the Monlet is iterating through the

properties from within the process method.

package com.acme.monlets;

import java.util.Properties;

import java.util.Iterator;

import com.ttm.activemq.monitor.event.BaseEvent;

import com.ttm.activemq.monitor.Monlet;

import org.apache.camel.Processor;

import org.apache.camel.Exchange;

public class PropertiesMonlet extends Monlet {

 public void configure() {

 // Subscribe to AMon events and forward to seda queue so that the

 // event can be processed asynchronously

 monitor().to("seda:PropertiesMonlet");

 from("seda:PropertiesMonlet").

 process(new Processor() {

 public void process(Exchange exchange) throws Exception {

Revision 2.0.0 ActiveMQ Monitor

 Copyright 2009, Total Transaction Management

 www.ttmsolutions.com

57

 // Access the message‟s body, cast it to BaseEvent, and then use BaseEvent

 // to get the properties and iterate through them

 BaseEvent baseEvent = (BaseEvent) exchange.getIn().getBody();

 Properties props = baseEvent.getMonitorProperties();

 for (Iterator i = props.keySet().iterator(); i.hasNext();) {

 String key = (String) i.next();

 System.out.println("PropertiesMonlet: Key = " + key +

 " Value = " + props.get(key).toString());

 }

 }

 });

 }

}

Note how the Monlet uses the Camel exchange object to get the message body. All the event

messages that the AMon core plugin component publishes to the Monlets are of type

com.ttm.activemq.monitor.event.BaseEvent. Therefore, your Monlet has access to the BaseEvent

object and its „get‟ methods. The BaseEvent‟s getMonitorProperties() method returns a copy of

the AMon properties object. Another BaseEvent method that Monlet developers will find

interesting is the getEventType(), which returns the String representation of the event type.

10.2 JMX Client

You can also update the properties through a JMX client like the JConsole. AMon includes JMX

MBeans through which you can manage AMon (see The Management Console). The MBeans

allow you to invoke the following properties-related operations:

 View Properties: this operation will display the current list of properties and their

values.

 Put Property: this operation allows you to add a new property or change the value of

an existing property

 Remove Property: this operation allows you to remove an existing property. Please

note that removing a Monitor-specific property sets the value of that property to its

default setting.

 Save Properties: this operation will write out the current set of properties and their

values to the external properties file. So if you‟ve updated the properties, through the

JMX client, you can use this operation to ensure that your updates will remain valid

the next time the message broker is started.

10.3 Log4J Monitoring

AMon can be configured to monitor messages that are written to the ActiveMQ log file, which is

typically called “activemq.log” and located in “ACTIVEMQ_HOME/data/<broker name>”.

http://java.sun.com/javase/6/docs/technotes/guides/management/jconsole.html

Revision 2.0.0 ActiveMQ Monitor

 Copyright 2009, Total Transaction Management

 www.ttmsolutions.com

58

Only messages with the following log4j priorities or levels will be monitored: WARN, ERROR,

and FATAL. Also, AMon will only monitor those messages that are generated by object

instances that belong to the “org.apache.activemq” package.

To enable the monitoring of log4j messages, you must edit the log4j.properties file, which is

located in “ACTIVEMQ_HOME/conf, as follows.

1. Append the “, monitor” string to this line, which should be towards the top of the file.

log4j.rootLogger=INFO, stdout, out

The above line must end up looking like this.

log4j.rootLogger=INFO, stdout, out, monitor

2. Add the following lines to the end of the file.

Monitor appender

log4j.appender.monitor=com.ttm.activemq.monitor.Appender

log4j.appender.monitor.layout=org.apache.log4j.PatternLayout

log4j.appender.monitor.layout.ConversionPattern=%d [%-15.15t] %-5p %-30.30c{1} - %m%n

You must then make sure to set the monitor.log_entry property in the Properties File to true like

so.

Enable the publishing of the LOG_ENTRY event message type

monitor.log_entry=true

That‟s it! With those two simple edits, AMon will monitor ActiveMQ‟s log file and publish the

LOG_ENTRY event message type.

10.4 SNMP Agent

This section describes how to configure AMon‟s embedded SNMP v2 agent. The following table

lists and describes all of the agent‟s configuration properties that may be specified through

ActiveMQ‟s XML configuration file.

Variable Name Default Value Description

snmpCommunity

Revision 2.0.0 ActiveMQ Monitor

 Copyright 2009, Total Transaction Management

 www.ttmsolutions.com

59

activemq

The community name used for sending

SNMP notifications to SNMP network

management applications.

snmpHostName

The machine‟s IP

address

This is the hostname or IP address that the

agent uses for communicating with the

SNMP management applications; therefore,

management applications must send SNMP

requests to this hostname or IP address.

This also comprises the default list of target

hostnames or IP addresses that the agent will

target for sending notifications (traps). So by

default, SNMP notifications will only be sent

to the local or hosting machine. Please see

SNMP Notifications for details on how to add

hostnames to the notification target list.

Specifying an IP address of 127.0.0.1 can be

problematic on some machines. It is

recommended that you use the machine‟s

public IP address.

snmpMaxActiveClientCount

10

The maximum number of network

management applications that the SNMP

agent can communicate with.

snmpPort

8085

This is the port number that the agent uses

for communicating with the management

applications. Management applications must

send SNMP requests to this port.

snmpTrapPort

snmpPort+1

This is the target port number that the agent

uses for sending SNMP notifications (traps).

SNMP management applications should

listen on this port number for the agent‟s

notifications.

useSnmp

true

Set to “false” to disable the agent.

Revision 2.0.0 ActiveMQ Monitor

 Copyright 2009, Total Transaction Management

 www.ttmsolutions.com

60

Table 3 SNMP Properties

The above properties are static, because they cannot be modified while the message broker is

running; however, the following section will show you how you can override two of these static

properties with their dynamic counterparts.

The following is an example ActiveMQ 5.2 broker configuration file that illustrates how to set

the properties listed in the table above.

<!-- ActiveMQ Broker Configuration File -->

<beans

 xmlns="http://www.springframework.org/schema/beans"

 xmlns:amq="http://activemq.apache.org/schema/core"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans-2.0.xsd

 http://activemq.apache.org/schema/core

 http://activemq.apache.org/schema/core/activemq-core.xsd">

 <!-- Allows us to use system properties as variables in this configuration file -->

 <bean class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer">

 <property name="locations">

 <value>file:${activemq.base}/conf/credentials.properties</value>

 </property>

 </bean>

 <broker xmlns="http://activemq.org/config/1.0" brokerName="secprototype"

 dataDirectory="${activemq.base}/data" plugins="#monitor">

 …
 </broker>

 <bean id="monitor" class="com.ttm.activemq.monitor.MonitorPlugin">

 <property name="propertiesFile" value="c:\temp\myMonitor.properties"/>

 <property name="snmpHostName" value="127.37.78.98"/>

 <property name="snmpPort" value="9000"/>

 <property name="snmpTrapPort" value="9050"/>

 <property name="snmpCommunity" value="myCommunity"/>

 <property name="snmpMaxActiveClientCount" value="50"/>
 </bean>

 <camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">

 <package>com.acme.monlets</package>

 </camelContext>

http://www.springframework.org/schema/beans/spring-beans-2.0.xsd

Revision 2.0.0 ActiveMQ Monitor

 Copyright 2009, Total Transaction Management

 www.ttmsolutions.com

61

</beans>

By default, the SNMP agent is enabled. The agent is dependent on JMX; therefore, setting the

ActiveMQ broker‟s useJmx configuration attribute to “false” (see example below) will disable

the agent. If you intend to use the SNMP agent, make sure useJmx is not set to “false”. The

default setting for useJmx is “true”.

<broker xmlns="http://activemq.apache.org/schema/core" useJmx="false" brokerName="mybroker">

 …

</broker>

10.4.1 SNMP Notifications

When enabled, AMon‟s SNMP agent generates a notification (trap) when the hosting ActiveMQ

message broker starts and stops. These notifications include information such as the message

broker‟s name, machine name, IP address, date and time the notification was generated, etc.

Please refer to the AMon SNMP MIB for a full description of the notifications and all other

SNMP-related attributes.

By default, the agent will send notifications to the “activemq” community on the local or hosting

machine. See the SnmpPropertiesTable for details on how to change these static default settings.

However, via the Properties File, AMon allows you to override this static default behavior with a

dynamic list of community names and hosts that are to receive the notifications. Here‟s how it is

done.

1. Add the “monitor.snmp.trap.communities” property to the properties file and assign it a

comma-separated list of community names.

2. For each community name that is assigned to the “monitor.snmp.trap.communities”

property, add a “monitor.snmp.trap.<community name>.hosts” property to the properties

file and assign the property a list of host names or IP addresses.

So by adding those properties to the AMon properties file, you identify the communities and

their host names or IP addresses that will be the target of the agent‟s notifications (traps). This

will also be the target list for those Monlets that are generating notifications through

AMon’s SNMP Camel Endpoint.

Here‟s an example properties file

monitor.snmp.trap.communities= comm1, comm2, comm3

monitor.snmp.trap.comm1.hosts= host1, host2, host3

monitor.snmp.trap.comm2.hosts= host4, host5, host6

monitor.snmp.trap.comm3.hosts= 123.56.45.67, host8, host9

Revision 2.0.0 ActiveMQ Monitor

 Copyright 2009, Total Transaction Management

 www.ttmsolutions.com

62

Please note that specifying the properties in the Properties File will override the default static

values (i.e., community of “activemq” and the local machine’s IP address); therefore, if you would

like to continue to include the default values, you will need to specify them in the list. Also,

specifying an IP address of 127.0.0.1 can be problematic on some machines. It is recommended

that you use the machine’s public IP address.

11 The Management Console

AMon adheres to the JMX standard and as such, can be managed via any JMX client; the most

popular of which is the JConsole. Along with managing properties, as described in the previous

section, you can also „stop‟ and „start‟ AMon through the JMX client. Stopping AMon disables

the publishing of all event message types. Starting AMon re-enables the publishing of AMon

event messages types as dictated by the current set of Monitor-specific properties (see previous

section).

If the SNMP agent has been enabled, you will see references to AMon‟s SNMP-related MBeans

in the JConsole‟s MBean tab screen (see picture below). These MBeans are called,

“TTM_ACTIVEMQ_MIB”, “TTM_ACTIVEMQ_MIB_Amq”, and “snmp”. Please note that

the „operations‟ associated with these MBeans are not implemented and thus you will get an

error screen if and when you invoke any operations associated with these MBeans.

12 VirtualMachine Object

This section lists and describes the get methods that are made available through the „vm‟ MEL

variable. This variable is a reference to an AMon object that is called VirtualMachine or VM for

http://java.sun.com/javase/6/docs/technotes/guides/management/jconsole.html

Revision 2.0.0 ActiveMQ Monitor

 Copyright 2009, Total Transaction Management

 www.ttmsolutions.com

63

short. The purpose of this object is to give the Monlet developer access to real-time information

for the hosting Java virtual machine.

getDaemonThreadCount

public int getDaemonThreadCount()

The current number of live daemon threads.

getTotalStartedThreadCount

public long getTotalStartedThreadCount()

The total number of threads created and also started since the Java virtual machine started.

getPeakThreadCount

public int getPeakThreadCount()

The peak live thread count since the Java virtual machine started or peak was reset.

getThreadCount

public int getThreadCount()

The current number of live threads including both daemon and non-daemon threads.

getUsedHeapMemory

public long getUsedHeapMemory()

The current memory usage of the heap that is used for object allocation, in bytes. The heap consists of one

or more memory pools. The used and committed size of the returned memory usage is the sum of those

values of all heap memory pools whereas the init and max size of the returned memory usage represents the

setting of the heap memory which may not be the sum of those of all heap memory pools. The amount of

used memory in the returned memory usage is the amount of memory occupied by both live objects and

garbage objects that have not been collected, if any.

getMaxHeapMemory

public long getMaxHeapMemory()

The maximum amount of memory in bytes that can be used for memory management. This method returns

-1 if the maximum memory size is undefined. This amount of memory is not guaranteed to be available for

memory management if it is greater than the amount of committed memory. The Java virtual machine may

fail to allocate memory even if the amount of used memory does not exceed this maximum size.

getCommittedHeapMemory

public long getCommittedHeapMemory()

The amount of memory in bytes that is committed for the Java virtual machine to use. This amount of

memory is guaranteed for the Java virtual machine to use.

getInitHeapMemory

public long getInitHeapMemory()

Revision 2.0.0 ActiveMQ Monitor

 Copyright 2009, Total Transaction Management

 www.ttmsolutions.com

64

The amount of memory in bytes that the Java virtual machine initially requests from the operating system

for memory management. This method returns -1 if the initial memory size is undefined.

getUsedNonHeapMemory

public long getUsedNonHeapMemory()

The amount of used non-heap memory in bytes.

getMaxNonHeapMemory

public long getMaxNonHeapMemory()

The maximum amount of memory in bytes that can be used for memory management. This method returns

-1 if the maximum memory size is undefined. This amount of memory is not guaranteed to be available for

memory management if it is greater than the amount of committed memory. The Java virtual machine may

fail to allocate memory even if the amount of used memory does not exceed this maximum size.

getCommittedNonHeapMemory

public long getCommittedNonHeapMemory()

The amount of memory in bytes that is committed for the Java virtual machine to use. This amount of

memory is guaranteed for the Java virtual machine to use.

getInitNonHeapMemory

public long getInitNonHeapMemory()

The amount of memory in bytes that the Java virtual machine initially requests from the operating system

for non-heap memory management. This method returns -1 if the initial memory size is undefined.

getUptime

public long getUptime()

The uptime of the Java virtual machine in milliseconds.

getStartTime

public long getStartTime()

The start time of the Java virtual machine in milliseconds. This method returns the approximate time when

the Java virtual machine started.

getFreeMemory

public long getFreeMemory()

The amount of free memory in the Java Virtual Machine. Calling the gc method may result in increasing

the value returned by freeMemory.

getTotalMemory

public long getTotalMemory()

The total amount of memory in the Java virtual machine. The value returned by this method may vary over

time, depending on the host environment. Note that the amount of memory required to hold an object of

any given type may be implementation-dependent.

Revision 2.0.0 ActiveMQ Monitor

 Copyright 2009, Total Transaction Management

 www.ttmsolutions.com

65

getMaxMemory

public long getMaxMemory()

The maximum amount of memory that the Java virtual machine will attempt to use. If there is no inherent

limit then the value Long.MAX_VALUE will be returned.

getSpecificationVersion

public double getSpecificationVersion()

The version of the spec that the current VM adheres to.

getSpecName

public java.lang.String getSpecName()

The Java virtual machine specification name. This method is equivalent to

System.getProperty("java.vm.specification.name").

getSpecVendor

public java.lang.String getSpecVendor()

The Java virtual machine specification vendor. This method is equivalent to

System.getProperty("java.vm.specification.vendor").

getSpecVersion

public java.lang.String getSpecVersion()

The Java virtual machine specification version. This method is equivalent to

System.getProperty("java.vm.specification.version").

getOSName

public java.lang.String getOSName()

The operating system name. This method is equivalent to System.getProperty("os.name").

getOSArch

public java.lang.String getOSArch()

The operating system architecture. This method is equivalent to System.getProperty("os.arch").

getOSVersion

public java.lang.String getOSVersion()

The operating system version. This method is equivalent to System.getProperty("os.version").

getVmName

public java.lang.String getVmName()

The Java virtual machine implementation name. This method is equivalent to

System.getProperty("java.vm.name").

Revision 2.0.0 ActiveMQ Monitor

 Copyright 2009, Total Transaction Management

 www.ttmsolutions.com

66

getVmVendor

public java.lang.String getVmVendor()

The Java virtual machine implementation vendor. This method is equivalent to

System.getProperty("java.vm.vendor").

getVmVersion

public java.lang.String getVmVersion()

The Java virtual machine implementation version. This method is equivalent to

System.getProperty("java.vm.version").

getProcessCpuTime

public long getProcessCpuTime()

The CPU time used by the process on which the Java virtual machine is running in nanoseconds. The

returned value is of nanoseconds precision but not necessarily nanoseconds accuracy. This method returns -

1 if the the platform does not support this operation.

getSystemLoadAverage

public double getSystemLoadAverage()

The system load average for the last minute. The system load average is the sum of the number of runnable

entities queued to the available processors and the number of runnable entities running on the available

processors averaged over a period of time. The way in which the load average is calculated is operating

system specific but is typically a damped time-dependent average. Unavailable prior to Java 6. If the load

average is not available, a negative value is returned. This method is designed to provide a hint about the

system load and may be queried frequently. The load average may be unavailable on some platform where

it is expensive to implement this method.

	Introduction
	ActiveMQ’s Default Advisory System
	The AMon Monitoring System
	Monlet Container
	The AMon Plugin Module
	The Monitoring Expression Language (MEL)
	Apache Camel

	SNMP Agent and MIB

	The Anatomy of a Monlet
	The Basics
	A Dummy Monlet
	Sending AMon Events to a Seda Queue
	Using the MEL
	Monitoring the Size of an ActiveMQ Queue
	A Monlet that Sends SNMP Notifications
	Compiling Your Monlets
	A Warning

	The MEL
	Event Types as Constants
	Variables
	Methods
	Asynchronous Processing

	The Interval Timer
	SNMP Camel Endpoint
	SNMP LoggingNotification
	SNMP MonitorNotification

	JMX Camel Notification Endpoint
	Installing AMon
	Installing the AMon Files
	Loading AMon into the ActiveMQ Message Broker
	Loading Your Monlets into the ActiveMQ Message Broker
	Example Monlets

	Configuring AMon
	Properties File
	JMX Client
	Log4J Monitoring
	SNMP Agent
	SNMP Notifications

	The Management Console
	VirtualMachine Object
	getDaemonThreadCount
	getTotalStartedThreadCount
	getPeakThreadCount
	getThreadCount
	getUsedHeapMemory
	getMaxHeapMemory
	getCommittedHeapMemory
	getInitHeapMemory
	getUsedNonHeapMemory
	getMaxNonHeapMemory
	getCommittedNonHeapMemory
	getInitNonHeapMemory
	getUptime
	getStartTime
	getFreeMemory
	getTotalMemory
	getMaxMemory
	getSpecificationVersion
	getSpecName
	getSpecVendor
	getSpecVersion
	getOSName
	getOSArch
	getOSVersion
	getVmName
	getVmVendor
	getVmVersion
	getProcessCpuTime
	getSystemLoadAverage

