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1 Introduction

Apache ActiveMQ is a highly configurable, extensible, and feature-rich message-oriented
middleware (MOM) system. The purpose of this document is to serve as a reference guide on
how to use and configure ActiveMQ. The guide captures, what we understand to be, the more
important aspects of configuring and using ActiveMQ.

This guide supplements the documentation currently available on the Apache ActiveMQ web site
and there are instances where this guide refers you to specific documentation on that web site.
Other sources of ActiveMQ information are the ActiveMQ Discussion Forums.

The reader should have a basic understanding of MOM systems, the Java programming language,
XML, and the Java Messaging Service (JMS) specification/standard.

With this guide, you’re also given access to the source code for several ActiveMQ-related Java
applications. The following table lists and briefly describes the applications. To download the
applications click XXXX. Enter “XXXX” and “XXXXX” when prompted for the username and
password, respectively. Both the username and password are case sensitive.

Application Description

TTM’s Security Plugin is an ActiveMQ plugin module

File-based Security Plugin | that provides dynamically reconfigurable authentication

and authorization security services.

Camel-based Framework For | The MDP framework is a simple convenience mechanism that
Message Driven POJOs completely isolates a POJO from the underlying JMS provider.

This Camel and Spring based framework covers topics such as

dependency injection, introspection, annotations, Spring

configuration files, bean auto-wiring, Camel producer/consumer

templates, Camel routes, and lots more.

A Simple JMS Chat Application that illustrates the use of

JMS Chat Application the JMS and JNDI applications.

The Stock Watch List Application is a composite
Stock Watch application that represents the information flow of stock
prices from a Stock Exchange through a web browser.

Thank you for purchasing a subscription for TTM’s ActiveMQ Reference Guide. We hope you
find the guide both informative and useful. If you have any questions, please don’t hesitate to
contact TTM.
TTM Sales & Support
+1 760-591-0273
sales@ttmsolutions.com
info@ttmsolutions.com



http://activemq.apache.org/
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mailto:sales@ttmsolutions.com
mailto:info@ttmsolutions.com

January 7, 2010 ActiveMQ Reference Guide 2
1.1 What Is ActiveMQ?
ActiveMQ is an open source MOM system that is developed and maintained by the Apache

Software Foundation (ASF) community. The next section briefly describes a MOM system; to
learn more about MOM systems, visit the Middleware Resource Center.

ActiveMQ provides the following quality of service (QoS) features, which are expected by
world-class enterprise deployments: performance, scalability, availability, reliability,
transactional integrity, and security. ActiveMQ’s clustering and failover technologies also
provide high availability. ActiveMQ also supports a myriad of different low-level transport
protocols such as TCP, SSL, HTTP, HTTPS, and XMPP.

ActiveMQ adheres to a plugin architecture that makes it an extendible messaging framework, as
well as MOM system. The extendible nature of its architecture allows you to develop custom
modules that are included in various parts of the core engine’s processing chain. Examples of
such modules are core engine plugins, transport connectors, message dispatch policies,
persistence adapters, and network services.

ActiveMQ’s messaging engine, or message broker, is written in the Java programming language
and fully implements version 1.1 of the JMS; therefore, it presents a standards-based MOM
system through which Java applications can reliably communicate messages to one another. This
guide advocates the development of portable JMS applications and as such, emphasizes
adherence to the JMS and the Java Naming and Directory Interface (JNDI). There are instances
where the guide makes reference to ActiveMQ’s native application programming interfaces
(API), and in those instances the reader is warned that making direct reference to such a
proprietary APl will compromise the portability of their JMS client.

ActiveMQ can be deployed on any operating platform (e.g., Windows, UNIX, and Linux) that
provides a compatible Java Virtual Machine (JDK 1.5 or higher).

Even though it is written in Java, with the primary goal of implementing the JMS API,
ActiveMQ also supports other programming languages (e.g., C#, Ruby, Python, C/C++). This
document focuses on JMS clients and does not cover the non-Java clients. Please refer to the
ActiveMQ web site for more information on ActiveMQ’s support for non-Java programming
languages.

You should visit the EAQ on the ActiveMQ web site as it covers a broad range of ActiveMQ
topics.

1.2 What is MOM?

MOM is a specific type of messaging middleware that facilitates communications between
loosely coupled distributed applications. MOM is more closely identified with providing
asynchronous communications, via queues, between the loosely coupled applications. So within
the MOM framework, messages are sent to and delivered from a message queue. MOM clients
send a message to a queue and the message remains in the queue until another MOM client
retrieves the message from that queue. One advantage to this asynchronous messaging model is
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that the client retrieving the message does not have to be available when the message is sent to
the queue and can instead retrieve the message at any time. This is sometimes referred to as
deferred communications.

All of the above is opposed to a more tightly-coupled synchronous communications model where
the sender and receiver of a message must be available at the same time in order to successfully
communicate with one another. One example of a tightly coupled distributed system requiring
synchronous communications is Remote Method Invocation (RMI). With RMI, the sender
requires the receiver to be available when it sends the message; if not, the corresponding remote
method invocation fails.

Even though MOM is more closely identified with asynchronous communications, most MOM
implementations, including ActiveMQ, can also accommodate the more tightly-coupled
synchronous communications paradigm. This is typically performed via the Request-Reply
messaging pattern.

1.3 Why Use ActiveMQ?

ActiveMQ is the most popular open source software (OSS) MOM today, and is rapidly becoming
the de-facto MOM for OSS-based Service Oriented Architecture (SOA) deployments.

The following are advantages of employing OSS and ActiveMQ:

1) OSS advantages:

a. OSS is more cost effective than proprietary products; there are no royalty license
fees.

b. OSS is now accepted due to the success of Linux and the numerous projects
(including ActiveMQ) that comprise the Apache Software Foundation (ASF).

c. OSS provides customers freedom from being “locked in” to proprietary providers
of expensive software products, licenses, and support.

d. OSS provides more flexibility for support and current status through third party
professional services providers and public user forums.

2) AMQ advantages and features:

a. ActiveMQ is OSS

b. ActiveMQ can interoperate (via JMS bridging) with other JMS providers (e.g.,
IBM’s WebSphere MQ (formerly MQSeries), Progress’ SonicMQ, and Oracle’s
WebLogic), and supports clients written in C/C++, C#, Ruby, Perl, and PHP. This
provides a path for enterprises to embrace open source ESB for future
implementations, regardless of past technology commitments.

c. ActiveMQ offers proven scalability, availability, and performance that will grow
with the customer’s requirements.

d. ActiveMQ is standards based; it supports the JMS 1.1 open standard.

e. The ActiveMQ message broker is written in the Java language, and is thus very
portable.

f. In combination with Apache Camel, ActiveMQ can facilitate a wide range of
messaging patterns.

g. ActiveMQ is continually supported and updated by the ASF and the user
community.
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h. ActiveMQ is a fast and feature-rich open source JMS message broker primarily
targeted for loosely coupled, distributed application environments. It provides
message persistence, guaranteed message delivery, and can be highly scalable
through clustering, peer-to-peer and federated network.

I. ActiveMQ can use JDBC for persistence, and when combined with journaling,
can provide high performance persistence.

J. ActiveMQ supports a variety of transport protocols such as TCP, HTTP, XMPP,
SSL, UDP and multicast.

k. ActiveMQ is Spring-based and configured using dependency injection.

1.4 When and Where to Use ActiveMQ

1.41 Where
ActiveMQ is becoming the preferred OSS MOM for any modern enterprise application

architecture, and can be used to implement a SOA framework co-existing and supporting
historical client-server, publish and subscribe, and XML-oriented applications.

ActiveMQ can be integrated with a number of platforms/frameworks including: Geronimo,
Spring, and Apache Tomcat.

1.42 When

ActiveMQ provides a clean application agnostic interface when you need applications to
communicate by writing and retrieving application-specific data (messages) to/from queues,
without having a private, dedicated, logical connection to link them.

ActiveMQ is the preferred Open Source MOM when you need:
Availability: Transparent load balancing, failover, and recovery
Interoperability: With many various message stores including JDBC
Manageability: Can be administered with JIMX

Performance: Approaching or competing with proprietary solutions
Reliability: Guaranteed once-and-only-once message delivery
Scalability: Clustering and load balancing features

Security: SSL, HTTPS, and authentication and authorization.

1.5 Downloading and Installing ActiveMQ

To download and install ActiveMQ on your operating platform, follow the instructions described
in the “ActiveMQ Getting Started Guide”, which can be found at
http://activemqg.apache.org/getting-started.html

If you have downloaded multiple distributions of ActiveMQ, set the ACTIVEMQ_HOME
environment variable to point to the distribution you will be using. For example,

> export ACTIVEMQ HOME=SHOME/apache-activemg-5.0
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Ensure that, at a minimum, the following jar file is in your client application’s CLASSPATH:
activemg-all-<version>.jar. See section 20 for a list and description of other jar files that your
particular deployment may require.

2 ActiveMQ Components

Some of the more important components of the ActiveMQ messaging framework are the client
(application), message, destination, and message broker.

The client, which is an application component that uses the services provided by the message
broker, can be further categorized as either a message producer and/or consumer. A producer
creates a message, which it then gives to the message broker for routing and delivery to a
particular destination. Consumers retrieve messages from the destinations to which they have
been routed. A destination can therefore be viewed as a logical channel through which clients
communicate with one another. It is the responsibility of the ActiveMQ message broker or
network of brokers (NoB) to not only route the message to the correct destination, but to also
ensure adequate quality of services such as reliability, persistence, security, and high availability.
An ActiveMQ NoB can take on different network topologies such as hub-n-spoke, ring, peer-to-
peer, etc.

Network or Cluster
of Brokers

Client

Broker

Broker

Client Client

Many times an analogy is drawn between a MOM system and a postal service. That is, the client
is a postal customer, the postal system is a broker or NoB, the message is a letter, and the
destination is a post office box.

A destination, which can be either a queue or a topic, is maintained by the message broker (a
broker can maintain many destinations). Queues are used by producers to send a message to a
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consumer (1:1 relationship), while topics are used by a producer to send a message to one or
more consumers (1:N relationship). A queue is often-times referred to as a point-to-point
messaging channel, while a topic is referred to as a publish-subscribe messaging channel.
Producers that send messages to topics are more commonly referred to as publishers and
consumers that retrieve messages from topics are referred to as subscribers. To recap, a message
is read from a queue by only one consumer, while one or more consumers (subscribers) can read
a message from a topic.

Broker
L= | s
Message f Message
Producer >\ Queue » Consumer
Send Deliver

L Broker

Message Message R tl—‘

Publisher > Deliver ]
Publish — Subscribers

A

As previously mentioned, the message broker is the ActiveMQ component that accepts messages
from producers and delivers those messages to their corresponding target destination (queue or
topic). The broker or NoB is also responsible for delivering or dispatching messages from the
destination to one or more consumers. In ActiveMQ vernacular, the term “dispatching” is more
commonly used to describe the delivery of messages from the destination to the consumer. In the
process of routing and dispatching messages, the broker provides quality of service features such
as guaranteed delivery, high availability, security, and reliability.

There are two basic types of ActiveMQ brokers: embedded and standalone.

An embedded broker executes within the same JVM process as the Java clients that are using its
services. There may be one or more clients residing within a single JVM, each executing within
its own thread(s) of execution; all clients access the same embedded broker. The clients
communicate with their embedded broker via direct method invocation (DMI) as opposed to
serializing command objects (messages) across a TCP/IP-based transport connector. One
advantage of using an embedded broker is that if the network fails, its embedded clients can still
use the services of the broker. For example, a producing client can still send messages to the
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broker and any messages that need to be forwarded on to another broker will be held and/or
persisted by the broker until the network is once-again made available. Another advantage is
increased performance, because the broker’s embedded clients communicate with the broker via
DMI instead of across a TCP/IP connection.

Client \

Direct Method TCP/IP
. Broker 1
Invocation

Network

Client

JVM

Embedded Broker

Embedded brokers can connect to other embedded brokers to form what is referred to as a “peer”
network. Peer networks provide better performance because there is only one network hop
involved when sending a message from a producer/publisher to a consumer/subscriber.

Client Client
TCP/IP
Network

Broker 1 Broker 2

Client Client
JVM JVM -

Peer Network

A client starts an embedded broker via the vm or peer transport connectors (see sections 3.2.1
and 3.2.2).

Embedded brokers can also listen for and initiate connections to standalone or non-embedded
brokers. Unlike an embedded broker, a standalone broker is one that does not have its clients co-
residing in its JVM and communicates with its clients through network-based transport
connectors, which are covered in the next section.
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JVM

Client ~|

TCP/IP

Network Broker 1

JVM

JVM

Client -]

Standalone Broker

3 Connectors

Within the ActiveMQ nomenclature, the terms ‘transport connector’ and ‘network connector’
are significant. These connectors represent network communication channels through which the
clients communicate with their respective brokers and brokers communicate with one another.
The underlying wire format protocols used through these communication channels are called,
“OpenWire”, “Stomp”, “REST”, and “XMPP” (see section 7); the default protocol being
OpenWire. So when a client invokes a JMS operation (e.g., message send), the ActiveMQ client
libraries will wrap that operation into an OpenWire command object and then send or serialize
the command object, via the underlying ‘transport connector’, to the broker.

The following table lists the ActiveMQ supported wire protocols along with links to additional
information for the protocols.

Wire Protocol Additional Information

OpenWire http://activemg.apache.org/openwire.html
http://activemqg.apache.org/openwire-version-2-specification.html

Stomp http://activemqg.apache.org/stomp.html

REST http://activemqg.apache.org/rest.html
http://rest.blueoxen.net/cqgi-bin/wiki.pl

XMPP http://activemq.apache.org/xmpp.html
http://xmpp.org/
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A ‘transport connector’ is used by a client to establish a bidirectional communication channel
with a broker. It is also used by a broker to listen for and accept network connection requests
from clients and other brokers.

A ‘network connector’ is used by a broker to establish a communications channel to another
broker. This type of channel is also referred to as a “forwarding bridge”.

Transport and network connectors are typically specified through the client and broker’s external
configuration files.

/ Loz |

1 Broker 1 Broker 2 !

\ Network !
Transpat Con Cn)erctor Transport
Connectop - Forwarding //,Connector

Tl Bridge N
Client B - Client
(Producer) (Consumer)

When a broker (say broker 1) establishes or initiates a network connection with another broker
(say broker 2), the resulting connection serves as a unidirectional forwarding bridge that is used
by broker 1 to forward messages on to broker 2. In this case, broker 1 is referred to as the
producing broker, whilst broker 2 is referred to as the consuming broker. For example, if a broker
has producers, but no consumers, it may use one or more forwarding bridges to forward messages
on to those brokers that have appropriate consumers. If a broker has multiple forwarding bridges,
with appropriate consumers at the other ends of the bridges, it will load balance messages across
the bridges.

As described above, the default behavior of a network connector is to construct a unidirectional
forwarding bridge between two message brokers. So if broker 1 initiates a network connection
with broker 2, then the resulting connection can only accommodate messages flowing from
broker 1 to broker 2. The connection cannot accommodate messages flowing from broker 2 to
broker 1. In effect, broker 1 serves as the message producer and broker 2 the message consumer.
This default behavior could not, for example, accommodate two clients implementing a request-
reply messaging pattern, because the reply from the consumer could not flow back to the
producer. However, starting with version 5.0 of ActiveMQ, you can override this default
behavior so that the network connection can accommodate messages flowing in either direction.
In other words, brokers at either end of the channel can both produce and consume messages to
and from one another. This type of bidirectional network connection is referred to as a ‘duplex’
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