TTM

Total Transaction Management

ActiveMQ 5.3
Reference Guide

Total Transaction Management, LLC

An Open Source Solutions Company
570 Rancheros Drive, Suite 140
San Marcos, CA 92069
760-591-0273
www.ttmsolutions.com

http://www.ttmsolutions.com/

NOTICE

YOU AGREE THAT THE REFERENCES, SAMPLES AND PROGRAM(S) ARE PROVIDED AS-IS, WITHOUT WARRANTY OF ANY
KIND (EITHER EXPRESS OR IMPLIED). ACCORDINGLY, TOTAL TRANSACTION MANAGEMENT, LLC (TTM) MAKES NO
WARRANTIES, REPRESENTATIONS OR GUARANTEES, EITHER EXPRESS OR IMPLIED, AND DISCLAIMS ALL SUCH
WARRANTIES, REPRESENTATIONS OR GUARANTEES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR ANY PARTICULAR PURPOSE, AS TO:

(A) THE FUNCTIONALITY OR NONINFRINGEMENT OF PROGRAM, ANY MODIFICATION, A COMBINED WORK OR AN
AGGREGATE WORK; OR

(B) THE RESULTS OF ANY PROJECT UNDERTAKEN USING THE PROGRAM, ANY MODIFICATION, A COMBINED WORK
OR AN AGGREGATE WORK.

IN NO EVENT SHALL TTM OR ANY OF THE CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, CONSEQUENTIAL OR ANY OTHER DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THE SAMPLES AND PROGRAMS, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES. YOU HEREBY WAIVE ANY CLAIMS FOR DAMAGES OF ANY KIND AGAINST TTM OR ANY
OF THE CONTRIBUTORS WHICH MAY RESULT FROM YOUR USE OF THE REFERENCES, SAMPLES, AND PROGRAM(S).

January 7, 2010 ActiveMQ Reference Guide i

1

Table of Contents

INTRODUCTION ..ottt st et e st s te e s be e e be e e bt e e be e e beeebaeesteeeabeeebeeebeeebeeesteeetbeesreeennren 1
1.1 WHAT IS ACTIVEIMQ? ..ottt ettt et ettt ett e st e et e e st e e ebe e e s tae e saee e s te e e bt e e sbeeestbeesaeeesabeesneeesareesrneesnrean 2
1.2 LTAT LT B Y, (O 1 PP S 2
1.3 WHY USE ACTIVEMOQ? oottt ettt ettt et s et e e st e e st e e s tae e sate e sdb e e bt e e s teeebbeesaeeestteesteaesareesneeesareas 3
1.4 WHEN AND WHERE TO USE ACTIVEMOQcoiiiiiiii ittt ettt st e s tbe st e et e e stee e stae e saaeestaeesnneesnee s 4

14.1 LT OO RRORRTR 4

1.4.2 LT I OO RRORRPR 4
15 DOWNLOADING AND INSTALLING ACTIVEMOQiiiiiiiiic ettt sate e s bae e nbe e e sbaeebee s nbeeeree e 4

ACTIVEMQ COMPONENTS ..ottt ettt ettt s te e s be e abeeab e s abesbeeetesbe e beesbesneesanesaeebeenns 5

CONNECTORS ...ttt e e e e s e s ae e e st beesaee e iabeesabessRbeesabe e st beesabeesbeeeaheesirbeesateesbbaesabeessbeesnneean 8
3.1 (070] V] =l 0] 2B U 1 1 SRR 10
3.2 LOW-LEVEL CONNECTORSciittteieittteeiiutereaiinseesaiseseesassesaessssseasssssssasssessissesesssssssssnsessesissssssssssesesnsseesssens 12

3.2.1 VM e —e e Ee e be e e bt e e be e e bt e e be e it e e e bee e be s e Re e e be e e bee e beeenbeeeteeenreeeres 13

3.2.2 =T PSSR 16

3.2.3 1O PSRRI 17

3.24 NN L SO URROPRU PP 18

3.25 RIS PR O URRROTRUPPROP 19

3.2.5.1 Setting up the SSL Key and TTUSE STOTESiueuiiieiriieiieereeiece ettt et see ettt s e ene s 19
3.2.5.2 Starting the SSL-enabled BroOKET...........coeiiiiiirieirieiiee ettt ettt s 20
3.2.5.3 Starting the SSL-eNabled CHENL...........cciiiiiiiiieireee ettt et see et es 20

3.2.6 L I 0 I I T TR OURROURRPPP 21

3.2.7 Y 0 1o] AT O PR PUPPP 22

3.2.8 RENUEZVOUSveeiirie ittt ettt s e e e et ee et e e bt e e s bee e ebte e sbeeesbteesbeeeabeeesabaesabesssbeesabeesabeesnbesanbeesnresans 23
3.3 COMPOSITE CONNECTORSutieeeitiieeeitieeeeitseseasseeesassesesastseesassseeasssssesssssessanssssssassesesssseseesassssessssenesssseeesanss 24

3.3.1 K] 7z Lo PO OUPRROUROPPRROPN 25

3.3.2 L= U] [0 = PRSP TOUPRRUPROPPRRUPN 25

3.3.3 [TS0 OSSOSO 27

3.34 L 10101 | PSP PRPSRN 28
3.4 MONITORING A TRANSPORT CONNECTOR.....ccutttieiittttesiteeeesitreeeasttreesstreessissaseaasteeesaassssessssssessssseeesnssseesssees 30

RV T B 1O A =4 0 1 TR 31

CLIENT CONFIGURATION ..ottt ettt ettt s e st e s tve et e e s tae e sbbe e sbeeeebaeesbeeesabeesabeesaaeesaneesntens 31
5.1 THE INDLPROPERTIES FILEuviiiiiiiiiec ettt ettt ettt e ettt e sttt e e ettt e e e st e e e st e e e e tte e e e antaeeesaneeeeaastneeesnneeeesnaneean 31
5.2 THE LDAP-BASED JNDI ...ttt ettt st e e et e e e et e e e s b e e e e sata e e e snbeeaesanaeeean 37

5.2.1 Environment Properties Hashtable..........ccoov oo 39

5.2.2 The JNAIPrOPEITIES FIIE ...ocuviieeeiee ettt et e e te e e e e saeesreenneenes 39

5.2.3 SYSEEIM PIOPEITIES ... ettt sttt bbbttt e et bt bt s bt e bt e st et et sb e sb e bt e b e e e et e neesaenbas 40

5.24 NN BT O] 1] - 11T] TSROSO 40
5.3 L]V (07 LSOO SOPPPRRPTI 42
5.4 SPRING. ... ettt e ettt e e e ettt e e ettt e e e ettt e e e etbeeeesabeeeeasteeeaasaeeeessbseaeanseeeeaasbeeeeasbeeeeanbbeeeaabaeeeaabaeeeaatreeeeaabeeaeatreaeanns 44

BROKER CONFIGURATION .. .ooiitii ettt ettt sttt sttt ste s sate s s sbe s satessabessatesssbessatessnbessnsesssbessnreeans 44
6.1 SPECIFYING THE BROKER’S XML CONFIGURATION FILE ...voiiiiiiii ettt e e svae e 44
6.2 THE BROKER’S XML CONFIGURATION FILEcciicttiie ittt et e et e et e e et e e enaae e e s enveeesentaeeesneeaesenaneean 45

6.2.1 o] 0] (=T U 47

6.2.2 EFANSPOITCONNECTON ...ttt er bbbt e e nr bbbt e e e nnenne e 48

6.2.3 Q1T oT (Lo a1 Te1 (o T TR OURTROPRRTTRR 50

January 7, 2010 ActiveMQ Reference Guide ii

6.2.4 SYSTEIMUSEAIE ...ttt ettt ettt b bbbt h b e e b e be e sb e e be e bt e Re e eh b e eh b e nb e e ke e beenbeeaneeae e nbeenbeenee 53
6.2.4.1 SENUFAITTNOSPACEc.eeeeeeieieei ettt et a et e b e b e se et e e et e s e e bt ebesbeebeseeneeneeneans 55

6.2.5 [T B T e=Y AN Fo T OSSR UR PPN 56
6.2.6 (0 [SE (A F= N 0] TR 56
6.2.7 AESEINALIONPOIICY ...ttt bbbttt b et b e 57

6.3 USEDEDICATED TASKRUNNER.uttiiiiieiiiiitiitiee e e e s s eiibtie e s e e s s sebbbaeesessssaab b b et s eesssssabbbaseeesssssbbbbbeeesesssabbrbeness 58

A AV 12 = = =@ I 1O 1O @] 0 TR 58
8 NETWORK OF BROKERS.ottt ettt et e et e e sttt e e st e e e s eb b e e e s eab e e e s st b e e e ssabasessbenessbaneeas 60
8.1 STORE AND FORWARDcoiiiittttiiit ettt e ettt ettt e e e e s e bbbt et s e e e s e s bbb b e e s e e e sse bbb b b eeseessee bbb baaeeesssasabbbaneeesssasasres 60
8.2 [L o AN [=T I 1 2 T 62
8.21 Master/Slave Broker CONfIQUIatioNSeouiiriiiinieiec et 62
8.2.1.1 U= TS LT] P 1Y 62

8.2.1.2 Shared File SYStem IMASEr SIAVEcouiiiiiieiie ettt se bttt ebesbe st e e eneeneeneenas 66

ST I TN 1B = T O 1V) (=T G -\ O 68

8.3 ISOLATING YOUR BROKER FROM OTHER BROKERScciiiiiviiiiiieieiiiiities s e s s esaibbeseesssessasbbessesessssassbanesesessas 68

O ADVISORY MESSAGING ...ttt ettt e st e e st e e e s e bt e e s s b b e e s sas b b e e s ebabeessbbessaeatbesssabaeessbaeeeas 69
10 ACTIVEMQ MONITOR (AMON).....oiiiiiititieieieie e sie sttt stesteseessessaeseeseessessessessessessessesssessessesseses 72
O R |V o] N[= O 7N 11N =1 = R 72
O NN 1Y == N T 72
11 ADMINISTRATION ..ottt e e et b e e e et et e e s bt e e e s abba e e s sbbee e s s bbeessabbeesssabeeesssbbesssabeeesssnres 72
B R R 0 /1Y - N o I = T SRR 72

8 N [0 | N [T | = RRRP 75
7 R o oo 0 = L4 o o S 75
O o o =11 1o] o 76
7 T @ o =1 = L1 o o S 77

R T VY = = N O] N1 | N SRR 79
11.3.1 Securing Access to the WeD CONSOIEcovviiiiiee e 83
11,4 DESTINATIONSOURCE.......uuttieiieeiiiiiitrieteeestiiitteetseessasisbastsssssasisbasttesssssiastrsseessesiisbasssessessiasrsresseesssassrresess 83
12 IO LT 1 L TSR 84
R R 00] Y, 1Y [N LS I o Tt | N 84
o o T 84
R TN 1\ 7N o T e LT 1|\ 85
12.4 CONTROLLING LOGGING WITH JCONSOLE......uutiiiieeiiiiittriiieeeesesistteieeesssssastssssesessssssssssesssessssssrssssssesssssssssesses 86
R T O [Nl I 1T 1[N 87
13 CONSUMER OPTIONS ..ottt ettt e et e e s et et e s s b e e e s sbbe e e s abbaeessbbeessabbeesssabaeessbbeeeas 87
R R R = = = ot I 1Y SRR 88
13.2 SLOW CONSUMERS FOR NON-DURABLE TOPICS......cciitttttiiieiiiiiitiriiee e e s siittreieesesssssbasaessesssssssbssssssessssssssesess 90
13.3 ASYNCHRONOUS DISPATCH (DISPATCHASYNC) ...ecuviitteitieteeteseesieesteesseesseesessesssesssessaessesssesssesssessesssesssesnns 94
13.4 RETROACTIVE CONSUMERSiiiiiitittttittee it iiitttteteee et esisbbretesessasssbbaateeesssssabbbsseesesssabbaaaeesessssabbbbeseeessaasrrreeess 95
13,5 EXCLUSIVE CONSUMERS ...tttiiiiieiiiiittietee e it siittretsesssssssbassssessssistbassseessssssbbsseesesssasbbbaaeessesssabbbbeeseesssaarereeess 97
13.6 PRIORITIZED CONSUMERS....utitiiiiiiiitttttte e st eiittbress e e st esatbaateeessesibbbaateeeessssbbbeseesaesssbbbbaeesessssasbbbbeeeeesssassbrbeeess 98
13.7 DEAD LETTER QUEUE (DLQ) ...ttiutitiitiie sttt ettt sttt sttt st be bbbt se e e e e e b sbeebesbe e st e e e nne b seennas 98
13.7.1 INAIVIAUAIDEAALEIEISIFALEQYeveeerteiteeieeieeie ettt bbbttt b e bbb bt e e e b b e 99
13.7.2 SharedDEAdLELtErSIIAIEOYcvevereireerie ittt sttt sttt se ettt et et bt e b b e e e e sbe e 100
13.7.3 DisCArdiNngDLQBIOKELc.cciiieiiiiiiie sttt sttt bbb et s et e bbb e bt s e e e e e b sbe e 101
13.7.4 What Happens TO EXPIred MESSAGES?........eiiaiiiirierieitisieeieee ettt sttt st saesae e 101

14 ADVANCED FEATURES ..ottt oottt ettt e ettt st e e e ettt e e et e e st e e e s ettt e sar et e e serteeesareeesrrees 102
T4.1 ASYNCHRONOUS SENDSutviiiieeeisiittettteeessiieusstessesssasisstesssesssssiistastsesssssissesssesssssimssssesssessssisressseesssisrnne 102
14.2 PRODUCER FLOW CONTROL (PFC) ...ctiiiitiiiiiietiriiietisieiete sttt ettt sttt 103

14.2.1 Producer FIow Control and QUEUESveveierieerirsteseeeeriesiesiesee st steeseeseeeessesreseesseeseeeeneeseesseses 103

January 7, 2010 ActiveMQ Reference Guide iii

14.2.2 Producer FIOW CONtrol aNd TOPICS ..c.ueiviiieiieieiiie ettt sttt bbb e 104
14.2.3 SYNCRIONOUS SEINUS ..ottt sttt e e bbb e b e bt e s e et et sbeebeebeeb e e e et e neesbennas 105
14.2.4 ASYNCATONOUS SENTSuviviiteiietiiteieeie sttt sttt b bbbt b bbbt b e bbb bbb st b 106
L14.3 IMESSAGE GROUPS......cutiitiiitieitiete ettt e ieesteesteesbeesteabeaaseaheeabe e ab e e be e s beesbeeh b e eh e e ehe e ebe e beambeeabeebe e st benbeenbeesbeannennnas 107
14.3.1 MeSSaQgE GrOUPS VS SEIBCTIONS.ueiiiiiiiiieieete ettt et 108
144 TOPIC IMESSAGE ORDERING......ccitttutttttasteestessteasteaseasseassesseaaseesseestesssesssesseesaesaseaaseanseassesseestsesbeestesssesssessnas 109
14.5 BINARY LARGE OBIECTS (BLOBS)ecuiitiiiiiiiiitiieii ittt 110
14.5.1 SENTING @ BLOB ..ottt bbb bbb bbb ettt 111
1452 ReCEIVING @ BLOB.......oiiii bbb 114
14,6 ACTIVEMQ STREAMS ...ttt eitesieestee bt e te e te et aaeesbeeab e e be e s beasbeshbeebe e she e abeebeembeeabeesb e st e e nbeesbeebeannesnnas 115
147 COMPOSITE DESTINATIONS.utettautiettesteesteesteasteaseasseassesseesseesseastesssesssesseesaesabeanseasseassesssesssesbeesbesssesssessnas 115
14.7.1 Client-Side COMPOSite DESHINALIONSceiviiieiiieiieiiie etttk 115
14.7.2 Broker-Side CompoSite DESHINALIONScceiviiiierieiiieriee e 117
14.7.3 Selecting CompoSite DESHINALIONS.coveiiiirieiie ettt 117
L4.8 VIRTUAL TOPICS. . .eiuttiueiitieittestteiteestesieesteestessbeesteassesaseaseesbeeabeebees b b asaeessesbe e s heeaR b e bt embeabn e ebb e st eenbeenbeenbeennennnas 118
14.8.1 Virtual Topics vS. COMPOSIte DESINALIONSeiveiiiirieiieniei ittt 122
149 MIRRORED QUEUES......ciittiitieitiettasttsieesteestessteesseasesaseaaeasseabeebeasbesssesssesbeeahaesbeeaeembeesbenaeeabaenbeenbeenbeannesnnas 122
14.10 MESSAGE TRANSFORMERSutteittteiuttesitteateessteeateesabeeasseessteeaseeastseaseeasseesabee e bbeenseeesssasabbaensreessneesnneas 123
14.11 CONNECTION POOLINGeuttiuteitieatee st et ettt st teesaeesbeassesseesbeesbeesbeesbeesteaseeshbeebesebeesbeenbeanbeaneenbeenbeens 124
14.12 SPRING SUPPORT ..uttitteiteetesuteaseesteesteesteastessaess st ibeesteesaeaneesabeesseassaabbeabeesbeeseeaseesseeasesaRbesbeenbeanseanbasteenbeens 124
14.13 IMIESSAGE CURSORS ... utiutiiutiateestteteesteesaesteasbeeseeesaeaseesseeaseesseeabeebeeseeaheesseeseeaiaeanbeenbeesbenbeesbeesbeebeeneennees 125
14.14 ENTERPRISE INTEGRATION PATTERNSutiititieriieeiestestesieaseaseeeestessessessessessesssestessessessessessesseessnssensessens 125
14.15 INDIVIDUAL ACKNOWLEDGEutittereeteteseestesseassasaessessessessessesssessessasssssessessestansesssessessessessesseessessensessens 125
14.16 PRIORITIZING IMESSAGESvtiittieittteitttesitee sttt e sttt e shbe e sttt esase e sbseesabeesebe e a b e e sh e e e abb e e sbneeanb e e sbneennbeesrneennneas 126
15 EXTENDING ACTIVEMQ’S FUNCTIONALITY .ottt st 126
16 AUTHENTICATION AND AUTHORIZATION SERVICES.......ccccot ittt 129
16.1 AUTHENTICATION ..e.uvtuieauiesteestieteestesseeseessbesseeesseasstanseassesssesseesseesteassesssessessaesssessseansenssesssesssessesssesssessnssens 130
16.1.1 Authentication and Authorization between Message Brokerscocooeiieniiineneinenencsenecee 132
16.2 AUTHORIZATIONeiuttiuieeteesteestieteestesseeseeesteesteesseasseshaeabeesssesseebeesteaseeassesbeesbeesbeebeanbeasbeasee st eesbeenbeentesseesnnes 133
16.2.1 Controlling Access to Temporary DesStiNatioNSccocoivireiieneiine e 135
TR T 7.1 =SSOSR 135
16.4 TTIM S SECURITY PLUGINSuiiitietiatiesieesieesttinteenteaneeaseesseesseesseeseeassesssessesssessseenseanseassesseesssesseessesssessesnees 136
16.4.1 File-Based SECUFILY PIUGINciiiiiiiiiiiiiie ettt 136
16.4.2 LDAP and JDBC Based SeCUNity PIUGINS.........cccooiiiiriiiieiee e 137
17 PERFORMANCE AND SCALING ..ottt st nn e e 137
17.1 PERSISTENT VS. TRANSIENT IMESSAGES.ceittettiteairiauresttesteesteebesssesieesbeesieesseesseaseassesssesssesbeesseesessnesnnes 137
0 T R XV Tod] 0] T TU ST o SRS 138
17.1.2 TFANSACTIONS ...ttt ettt b bttt b ekt b bt h et e e e bt e bt e bt e bt e bt et et et eheeb e e bt eb e e e et e neesbe b 138
17.2 TCOP TRANSPORT ...cuttiuttatteattesteeteesteeseestee skt e sbe e bt e et ea e e ehe e ek e e b e e b e e s bt e s b e e b e e e b e e e Re e ke e bt e mb e e nb e ebb e st b e nbeenbeenbeannennnas 138
17.3 PREFETCH LIMIT ..ttt b e ettt b e bt bt bt e et e st e eb e et e e nb e et e e beanneennas 138
17.4 THREADS, THREAD POOLING, AND SCALINGcutiittiuiiauiiiteestiesteeiesssesisesieesieesseesseasnesssesssesssesseessesssesssessnes 140
17.4.1 Blocking vs. NON-BIOCKING 1/Oooiiiiiieie ettt ta e ae e 140
N S 1 1 =T To N = oTo 1T SRS 141
17.4.2.1 USEDEAICAtEATASKRUINNETeiviiiireictee ettt sttt ettt et e s abe et e e e beesbeesabeesbeeesbeesabeebeeerbeesraesnbeenres 141
17.4.2.2 OPLIMIZEADISPALCI ...ttt stttk b e bbb e reane s 141
17.4.3 Asynchronous Dispatch (diSPAtChASYNC)........couiiiiiiiiiiiieiieie et 141
17.4.4 Asynchronous Session Dispatch (alwaySSESSIONASYINC)c.cevirierieierireeieienie e 141
17.45 The KahaDB MESSAGE SLOTEc..oiuiiueiieitiitieiieee sttt sttt ettt bbbt et b e sbesbesbeeseeneeneesbennas 142
175 DUPS_OK_ACKNOWNLEDGE.......cc.cii ittt ettt b b sae e 143
17.6 CONSUMER CLUSTERING ...c.tteutieutiautiateesteesteesteesseaseaaseassesseeaseasseasseassesssesbeesbeesbeaseamseasseaseesbsesbeesbeasbeanneannes 143
17.7 EMBEDDED BROKERS.......ciitiiitiitiatiiii sttt sttt ettt b e bttt et e s bt s hs e s be e sbe e ebe e bt emb e e st e abb e et e e nbeenbeabeenneaneas 143
L17.8 IMESSAGE COPY ...ttt ettt ettt h e bttt ettt he e e bt e e b £ e ke e skt e s bt e h b e e b e e e he e bt e bt e mb e en b e ebb e et b e nbeenbeenbeanneannas 144
17.9 OPENWIRE LOOSE ENCODINGuiiutiiiiiitiesiee sttt ettt sttt ettt ettt st sbe e sbe bt mb e seeebe e b e e sbeenbeabeanneannas 144

17.10 IMEMORY UTILIZATION 1.uttttiiiie et iieitttet e e e e s eeibb et s e e e s s sabbb et s e eesssabbaateeeesssabbabseeseessaasbbbbeasseessasabbbesesessessasres 144

January 7, 2010 ActiveMQ Reference Guide iv

18 A SIMPLE JMS CHAT APPLICATION ...ttt 145
19 STOCK WATCH LIST APPLICATION ...ttt ettt st s ne e 146
19,1 OVERVIEW .. ittt ittt ettt ettt ettt s bt e s bt e be e bt e e st ek b e eh £ 2ok 2o ke ookt e s b e eh b e eE e e Hhe e ebe et e e ab e e hb e ebe e et e e nbeenbeenbeannennnas 146
19.2 HIGH LEVEL IMPLEMENTATION ...ttiutitittsttesteesteasteatesssesstesteasseesbeasbesssesssesseesaessseesesnseassesssesssesbeesbesssesssessnns 147
19.2.1 Stock Exchange IMpIEmMENtation.............ooiiiiiiieieee e st sre s 148
19.2.2 Stock Publisher IMPIEMENTALIONcviiiiiiiiee e 148
19.2.3 Message Broker IMpIEMENTALIONccooiiiiiiiei e 149
19.2.4 Web Server AP IMPIEMENTALIONoveiiiieiieiee e 149
19.2.5 Web Browser IMpIEMENTAtioN............cociiiiiiieiee e 149
19.3 DETAILED IMPLEMENTATIONcouttiutiatttsteesteesteesteateassesssesseasseesbeesbesssesssesseessedabeanseanseassesaeesbsesbeesbeestessnessnas 151
19.3.1 Server-side SPring MVC COMPONENESueveiirierieiiiierietestese ettt ebe ettt sb e sn e sbe e b 151
19.3.1.1 DATA IMOUEN ...ttt ettt b ettt b ek b bt n et e Rt et b et et et e neeneenn 151
19.3.1.2 WEBWW ettt ettt ettt h ettt ekt Aot £ e Rt e £t Rt ke E e R e AR oAt e R e R £ eR e ek e R e e SRR £ e Rt e Rt e Rt ebeeeeebe e et eneeneenn 156
19.3.1.3 (00T 1 (0] | =T OSSO 159
19.3.14 Stitching it together SPriNG STYIEttt eneeneas 162
19.3.15 Deploying the Watch-list application iNt0 TOMCALccouiiiiiiiiiieieiiee et 165
19.3.1.6 Running the various Servers — Tomcat, ActiveMQ, HSQIAD..........cooveiiiiiiiiiieiices e 165
19.3.2 ClENt APPHICALION ..ottt bbbt bbb bbb et nb etk en et 166
19.3.2.1 SEOCK CIASS ...ttt ettt h ettt e b e st et bt be et e be st et eR e Rt e be ke beneenbe e eneereaneas 166
19.3.2.2 A Watch-list retrieVer — FEICRSNAIEScoiiiiiiiieeee et 168
19.3.2.3 The message sending main class — TOPICSENACHENT..........coiiiiieiiiiii s 172
19.3.25 Building the standalone CHENT ..o 178
19.3.2.6 Running the client StANAAIONE........c.ooviiiiii e 178
19.3.2.7 RUNNING the ClIeNt UL OF ECHIPSE.cviviiiiiiiieee i 178

20 JAR FILE REQUIREMENTS ...ttt 179

January 7, 2010 ActiveMQ Reference Guide 1

1 Introduction

Apache ActiveMQ is a highly configurable, extensible, and feature-rich message-oriented
middleware (MOM) system. The purpose of this document is to serve as a reference guide on
how to use and configure ActiveMQ. The guide captures, what we understand to be, the more
important aspects of configuring and using ActiveMQ.

This guide supplements the documentation currently available on the Apache ActiveMQ web site
and there are instances where this guide refers you to specific documentation on that web site.
Other sources of ActiveMQ information are the ActiveMQ Discussion Forums.

The reader should have a basic understanding of MOM systems, the Java programming language,
XML, and the Java Messaging Service (JMS) specification/standard.

With this guide, you’re also given access to the source code for several ActiveMQ-related Java
applications. The following table lists and briefly describes the applications. To download the
applications click XXXX. Enter “XXXX” and “XXXXX” when prompted for the username and
password, respectively. Both the username and password are case sensitive.

Application Description

TTM’s Security Plugin is an ActiveMQ plugin module

File-based Security Plugin | that provides dynamically reconfigurable authentication

and authorization security services.

Camel-based Framework For | The MDP framework is a simple convenience mechanism that
Message Driven POJOs completely isolates a POJO from the underlying JMS provider.

This Camel and Spring based framework covers topics such as

dependency injection, introspection, annotations, Spring

configuration files, bean auto-wiring, Camel producer/consumer

templates, Camel routes, and lots more.

A Simple JMS Chat Application that illustrates the use of

JMS Chat Application the JMS and JNDI applications.

The Stock Watch List Application is a composite
Stock Watch application that represents the information flow of stock
prices from a Stock Exchange through a web browser.

Thank you for purchasing a subscription for TTM’s ActiveMQ Reference Guide. We hope you
find the guide both informative and useful. If you have any questions, please don’t hesitate to
contact TTM.
TTM Sales & Support
+1 760-591-0273
sales@ttmsolutions.com
info@ttmsolutions.com

http://activemq.apache.org/
http://activemq.apache.org/discussion-forums.html
mailto:sales@ttmsolutions.com
mailto:info@ttmsolutions.com

January 7, 2010 ActiveMQ Reference Guide 2
1.1 What Is ActiveMQ?
ActiveMQ is an open source MOM system that is developed and maintained by the Apache

Software Foundation (ASF) community. The next section briefly describes a MOM system; to
learn more about MOM systems, visit the Middleware Resource Center.

ActiveMQ provides the following quality of service (QoS) features, which are expected by
world-class enterprise deployments: performance, scalability, availability, reliability,
transactional integrity, and security. ActiveMQ’s clustering and failover technologies also
provide high availability. ActiveMQ also supports a myriad of different low-level transport
protocols such as TCP, SSL, HTTP, HTTPS, and XMPP.

ActiveMQ adheres to a plugin architecture that makes it an extendible messaging framework, as
well as MOM system. The extendible nature of its architecture allows you to develop custom
modules that are included in various parts of the core engine’s processing chain. Examples of
such modules are core engine plugins, transport connectors, message dispatch policies,
persistence adapters, and network services.

ActiveMQ’s messaging engine, or message broker, is written in the Java programming language
and fully implements version 1.1 of the JMS; therefore, it presents a standards-based MOM
system through which Java applications can reliably communicate messages to one another. This
guide advocates the development of portable JMS applications and as such, emphasizes
adherence to the JMS and the Java Naming and Directory Interface (JNDI). There are instances
where the guide makes reference to ActiveMQ’s native application programming interfaces
(API), and in those instances the reader is warned that making direct reference to such a
proprietary APl will compromise the portability of their JMS client.

ActiveMQ can be deployed on any operating platform (e.g., Windows, UNIX, and Linux) that
provides a compatible Java Virtual Machine (JDK 1.5 or higher).

Even though it is written in Java, with the primary goal of implementing the JMS API,
ActiveMQ also supports other programming languages (e.g., C#, Ruby, Python, C/C++). This
document focuses on JMS clients and does not cover the non-Java clients. Please refer to the
ActiveMQ web site for more information on ActiveMQ’s support for non-Java programming
languages.

You should visit the EAQ on the ActiveMQ web site as it covers a broad range of ActiveMQ
topics.

1.2 What is MOM?

MOM is a specific type of messaging middleware that facilitates communications between
loosely coupled distributed applications. MOM is more closely identified with providing
asynchronous communications, via queues, between the loosely coupled applications. So within
the MOM framework, messages are sent to and delivered from a message queue. MOM clients
send a message to a queue and the message remains in the queue until another MOM client
retrieves the message from that queue. One advantage to this asynchronous messaging model is

http://www.apache.org/
http://www.apache.org/
http://www.apache.org/
http://www.middleware.org/mom/vendors.html
http://activemq.apache.org/faq.html

January 7, 2010 ActiveMQ Reference Guide 3

that the client retrieving the message does not have to be available when the message is sent to
the queue and can instead retrieve the message at any time. This is sometimes referred to as
deferred communications.

All of the above is opposed to a more tightly-coupled synchronous communications model where
the sender and receiver of a message must be available at the same time in order to successfully
communicate with one another. One example of a tightly coupled distributed system requiring
synchronous communications is Remote Method Invocation (RMI). With RMI, the sender
requires the receiver to be available when it sends the message; if not, the corresponding remote
method invocation fails.

Even though MOM is more closely identified with asynchronous communications, most MOM
implementations, including ActiveMQ, can also accommodate the more tightly-coupled
synchronous communications paradigm. This is typically performed via the Request-Reply
messaging pattern.

1.3 Why Use ActiveMQ?

ActiveMQ is the most popular open source software (OSS) MOM today, and is rapidly becoming
the de-facto MOM for OSS-based Service Oriented Architecture (SOA) deployments.

The following are advantages of employing OSS and ActiveMQ:

1) OSS advantages:

a. OSS is more cost effective than proprietary products; there are no royalty license
fees.

b. OSS is now accepted due to the success of Linux and the numerous projects
(including ActiveMQ) that comprise the Apache Software Foundation (ASF).

c. OSS provides customers freedom from being “locked in” to proprietary providers
of expensive software products, licenses, and support.

d. OSS provides more flexibility for support and current status through third party
professional services providers and public user forums.

2) AMQ advantages and features:

a. ActiveMQ is OSS

b. ActiveMQ can interoperate (via JMS bridging) with other JMS providers (e.g.,
IBM’s WebSphere MQ (formerly MQSeries), Progress’ SonicMQ, and Oracle’s
WebLogic), and supports clients written in C/C++, C#, Ruby, Perl, and PHP. This
provides a path for enterprises to embrace open source ESB for future
implementations, regardless of past technology commitments.

c. ActiveMQ offers proven scalability, availability, and performance that will grow
with the customer’s requirements.

d. ActiveMQ is standards based; it supports the JMS 1.1 open standard.

e. The ActiveMQ message broker is written in the Java language, and is thus very
portable.

f. In combination with Apache Camel, ActiveMQ can facilitate a wide range of
messaging patterns.

g. ActiveMQ is continually supported and updated by the ASF and the user
community.

http://www.enterpriseintegrationpatterns.com/RequestReply.html

January 7, 2010 ActiveMQ Reference Guide 4

h. ActiveMQ is a fast and feature-rich open source JMS message broker primarily
targeted for loosely coupled, distributed application environments. It provides
message persistence, guaranteed message delivery, and can be highly scalable
through clustering, peer-to-peer and federated network.

I. ActiveMQ can use JDBC for persistence, and when combined with journaling,
can provide high performance persistence.

J. ActiveMQ supports a variety of transport protocols such as TCP, HTTP, XMPP,
SSL, UDP and multicast.

k. ActiveMQ is Spring-based and configured using dependency injection.

1.4 When and Where to Use ActiveMQ

1.41 Where
ActiveMQ is becoming the preferred OSS MOM for any modern enterprise application

architecture, and can be used to implement a SOA framework co-existing and supporting
historical client-server, publish and subscribe, and XML-oriented applications.

ActiveMQ can be integrated with a number of platforms/frameworks including: Geronimo,
Spring, and Apache Tomcat.

1.42 When

ActiveMQ provides a clean application agnostic interface when you need applications to
communicate by writing and retrieving application-specific data (messages) to/from queues,
without having a private, dedicated, logical connection to link them.

ActiveMQ is the preferred Open Source MOM when you need:
Availability: Transparent load balancing, failover, and recovery
Interoperability: With many various message stores including JDBC
Manageability: Can be administered with JIMX

Performance: Approaching or competing with proprietary solutions
Reliability: Guaranteed once-and-only-once message delivery
Scalability: Clustering and load balancing features

Security: SSL, HTTPS, and authentication and authorization.

1.5 Downloading and Installing ActiveMQ

To download and install ActiveMQ on your operating platform, follow the instructions described
in the “ActiveMQ Getting Started Guide”, which can be found at
http://activemqg.apache.org/getting-started.html

If you have downloaded multiple distributions of ActiveMQ, set the ACTIVEMQ_HOME
environment variable to point to the distribution you will be using. For example,

> export ACTIVEMQ HOME=SHOME/apache-activemg-5.0

http://activemq.apache.org/getting-started.html

January 7, 2010 ActiveMQ Reference Guide

Ensure that, at a minimum, the following jar file is in your client application’s CLASSPATH:
activemg-all-<version>.jar. See section 20 for a list and description of other jar files that your
particular deployment may require.

2 ActiveMQ Components

Some of the more important components of the ActiveMQ messaging framework are the client
(application), message, destination, and message broker.

The client, which is an application component that uses the services provided by the message
broker, can be further categorized as either a message producer and/or consumer. A producer
creates a message, which it then gives to the message broker for routing and delivery to a
particular destination. Consumers retrieve messages from the destinations to which they have
been routed. A destination can therefore be viewed as a logical channel through which clients
communicate with one another. It is the responsibility of the ActiveMQ message broker or
network of brokers (NoB) to not only route the message to the correct destination, but to also
ensure adequate quality of services such as reliability, persistence, security, and high availability.
An ActiveMQ NoB can take on different network topologies such as hub-n-spoke, ring, peer-to-
peer, etc.

Network or Cluster
of Brokers

Client

Broker

Broker

Client Client

Many times an analogy is drawn between a MOM system and a postal service. That is, the client
is a postal customer, the postal system is a broker or NoB, the message is a letter, and the
destination is a post office box.

A destination, which can be either a queue or a topic, is maintained by the message broker (a
broker can maintain many destinations). Queues are used by producers to send a message to a

January 7, 2010 ActiveMQ Reference Guide 6

consumer (1:1 relationship), while topics are used by a producer to send a message to one or
more consumers (1:N relationship). A queue is often-times referred to as a point-to-point
messaging channel, while a topic is referred to as a publish-subscribe messaging channel.
Producers that send messages to topics are more commonly referred to as publishers and
consumers that retrieve messages from topics are referred to as subscribers. To recap, a message
is read from a queue by only one consumer, while one or more consumers (subscribers) can read
a message from a topic.

Broker
L= | s
Message f Message
Producer >\ Queue » Consumer
Send Deliver

L Broker

Message Message R tl—‘

Publisher > Deliver]
Publish — Subscribers

A

As previously mentioned, the message broker is the ActiveMQ component that accepts messages
from producers and delivers those messages to their corresponding target destination (queue or
topic). The broker or NoB is also responsible for delivering or dispatching messages from the
destination to one or more consumers. In ActiveMQ vernacular, the term “dispatching” is more
commonly used to describe the delivery of messages from the destination to the consumer. In the
process of routing and dispatching messages, the broker provides quality of service features such
as guaranteed delivery, high availability, security, and reliability.

There are two basic types of ActiveMQ brokers: embedded and standalone.

An embedded broker executes within the same JVM process as the Java clients that are using its
services. There may be one or more clients residing within a single JVM, each executing within
its own thread(s) of execution; all clients access the same embedded broker. The clients
communicate with their embedded broker via direct method invocation (DMI) as opposed to
serializing command objects (messages) across a TCP/IP-based transport connector. One
advantage of using an embedded broker is that if the network fails, its embedded clients can still
use the services of the broker. For example, a producing client can still send messages to the

January 7, 2010 ActiveMQ Reference Guide

broker and any messages that need to be forwarded on to another broker will be held and/or
persisted by the broker until the network is once-again made available. Another advantage is
increased performance, because the broker’s embedded clients communicate with the broker via
DMI instead of across a TCP/IP connection.

Client \

Direct Method TCP/IP
. Broker 1
Invocation

Network

Client

JVM

Embedded Broker

Embedded brokers can connect to other embedded brokers to form what is referred to as a “peer”
network. Peer networks provide better performance because there is only one network hop
involved when sending a message from a producer/publisher to a consumer/subscriber.

Client Client
TCP/IP
Network

Broker 1 Broker 2

Client Client
JVM JVM -

Peer Network

A client starts an embedded broker via the vm or peer transport connectors (see sections 3.2.1
and 3.2.2).

Embedded brokers can also listen for and initiate connections to standalone or non-embedded
brokers. Unlike an embedded broker, a standalone broker is one that does not have its clients co-
residing in its JVM and communicates with its clients through network-based transport
connectors, which are covered in the next section.

January 7, 2010 ActiveMQ Reference Guide 8

JVM

Client ~|

TCP/IP

Network Broker 1

JVM

JVM

Client -]

Standalone Broker

3 Connectors

Within the ActiveMQ nomenclature, the terms ‘transport connector’ and ‘network connector’
are significant. These connectors represent network communication channels through which the
clients communicate with their respective brokers and brokers communicate with one another.
The underlying wire format protocols used through these communication channels are called,
“OpenWire”, “Stomp”, “REST”, and “XMPP” (see section 7); the default protocol being
OpenWire. So when a client invokes a JMS operation (e.g., message send), the ActiveMQ client
libraries will wrap that operation into an OpenWire command object and then send or serialize
the command object, via the underlying ‘transport connector’, to the broker.

The following table lists the ActiveMQ supported wire protocols along with links to additional
information for the protocols.

Wire Protocol Additional Information

OpenWire http://activemg.apache.org/openwire.html
http://activemqg.apache.org/openwire-version-2-specification.html

Stomp http://activemqg.apache.org/stomp.html

REST http://activemqg.apache.org/rest.html
http://rest.blueoxen.net/cqgi-bin/wiki.pl

XMPP http://activemq.apache.org/xmpp.html
http://xmpp.org/

http://activemq.apache.org/openwire.html
http://activemq.apache.org/openwire-version-2-specification.html
http://activemq.apache.org/stomp.html
http://activemq.apache.org/rest.html
http://rest.blueoxen.net/cgi-bin/wiki.pl
http://activemq.apache.org/xmpp.html
http://xmpp.org/

January 7, 2010 ActiveMQ Reference Guide 9

A ‘transport connector’ is used by a client to establish a bidirectional communication channel
with a broker. It is also used by a broker to listen for and accept network connection requests
from clients and other brokers.

A ‘network connector’ is used by a broker to establish a communications channel to another
broker. This type of channel is also referred to as a “forwarding bridge”.

Transport and network connectors are typically specified through the client and broker’s external
configuration files.

/ Loz |

1 Broker 1 Broker 2 !

\ Network !
Transpat Con Cn)erctor Transport
Connectop - Forwarding //,Connector

Tl Bridge N
Client B - Client
(Producer) (Consumer)

When a broker (say broker 1) establishes or initiates a network connection with another broker
(say broker 2), the resulting connection serves as a unidirectional forwarding bridge that is used
by broker 1 to forward messages on to broker 2. In this case, broker 1 is referred to as the
producing broker, whilst broker 2 is referred to as the consuming broker. For example, if a broker
has producers, but no consumers, it may use one or more forwarding bridges to forward messages
on to those brokers that have appropriate consumers. If a broker has multiple forwarding bridges,
with appropriate consumers at the other ends of the bridges, it will load balance messages across
the bridges.

As described above, the default behavior of a network connector is to construct a unidirectional
forwarding bridge between two message brokers. So if broker 1 initiates a network connection
with broker 2, then the resulting connection can only accommodate messages flowing from
broker 1 to broker 2. The connection cannot accommodate messages flowing from broker 2 to
broker 1. In effect, broker 1 serves as the message producer and broker 2 the message consumer.
This default behavior could not, for example, accommodate two clients implementing a request-
reply messaging pattern, because the reply from the consumer could not flow back to the
producer. However, starting with version 5.0 of ActiveMQ, you can override this default
behavior so that the network connection can accommodate messages flowing in either direction.
In other words, brokers at either end of the channel can both produce and consume messages to
and from one another. This type of bidirectional network connection is referred to as a ‘duplex’

	Introduction
	What Is ActiveMQ?
	What is MOM?
	Why Use ActiveMQ?
	When and Where to Use ActiveMQ
	Where
	When

	Downloading and Installing ActiveMQ

	ActiveMQ Components
	Connectors

