TTM

Total Transaction Management

AMon

A Monitoring System for ActiveMQ

Joe Fernandez
joe.fernandez@ttmsolutions.com
Total Transaction Management, LL.C
570 Rancheros Drive, Suite 140
San Marcos, CA 92069
760-591-0273
www.ttmsolutions.com

TTM
AMOH Total Transaction Management

Designed specifically for monitoring the ActiveMQ (AMQ) message broker
process; it cannot be used to directly monitor AMQ clients or other queuing

systems.

Comprises two primary modules: Monlet Container and SNMP Agent. Both are
embedded within the AMQ message broker process.

The Monlet container hosts custom-built monitoring agents (Monlets), and
facilitates the rapid development of the Monlets.

A Monlet comprises conditional expressions and their corresponding actions; the

Monlet invokes actions when the corresponding conditions are satisfied.

The Monlet container gives its Monlets direct access to the message broker’s
runtime objects (i.e., overall runtime state) and also to some of the JVM's

runtime objects.

A variable of a conditional expression represents a particular runtime object

(e.g., queue or topic) in the AMQ message broker.

AMon TTiV

Total Transaction Management

« Examples of Monlets and the objects they monitor.

Resource Monlet — tests whether a particular runtime object (e.g., queue,
topic, etc.), within either the message broker or JVM, has breached a
threshold. The action may be to either invoke a script, fire off an email, or

raise an SNMP notification (trap).

Audit Monlet — tests whether a message that is being routed through the
broker meets a condition of some kind (e.g., includes some user-defined
property that has been assigned a particular value). The action may be to

write the contents of the message out to an audit log.

Exception Monlet — captures exceptions thrown by the message broker. The

action may be to send an email containing the contents of the stack trace.

AM TTM
On Total Transaction Management

Monlet container maintains a clean separation between Monlets and the broker/

JVM that they are monitoring. This separation is provided by the following:

« Event messages published by the Monlet framework and consumed by

Monlets.
« AMon’s monitoring expression language (MEL)
« Apache Camel integration framework and its DSL.
The Monlet container is installed as an AMQ message broker plugin; therefore, it is
included in AMQ’s main processing event chain.

Inclusion in the event chain allows the container to publish event messages that

correspond to each of AMQ's broker processing events.

The container is configured to publish messages that pertain to all or any subset

of these processing events.

The container also generates an asynchronous ‘Timer’ event and ‘AMQ

Exception’ event.

AMon

TTM

Total Transaction Management

A Monlet subscribes to all or any subset of event message types.

An event message contains object references to the message broker’s runtime

objects. So the message acts as a type of portal into the broker’s runtime objects.

Java Process (Java Virtual Machine)

Message Broker’s Runtime Objects

e

N

Y

Event
Message

N—

Monlets

a

\

AMon TTMmM

Total Transaction Management

AMon’s monitoring expression language (MEL) is an extension of the Java Unified

Expression Language (JUEL).
All of AMQ’s runtime objects adhere to the JavaBeans standard. The MEL

leverages that standard to access those objects’ properties.

AMon creates a MEL context for an event message. The context includes the
binding of MEL variables to the message broker objects, as well as MEL-specific

methods/functions and properties.

Simple example of a MEL conditional expression: ${destination.name = = ‘TEST.Q"}

AMon ™M

Total Transaction Management

Java Process (Java Virtual Machine)

Monlets

Message Broker Runtime Objects

¢ N

MEL Context
4 N

4 N\
/
/Q\\ Variable

\

bject /
gei"erences i pertics,
Methods
&
Variables

\O\\ Variable
~
k /\ Y,

Event Message

AMon TTM

Total Transaction Management

Monlets are implemented as Apache Camel routes.

Camelis a powerful Spring-based infegration framework that is used to
implement the enterprise integration patterns defined in Gregor Hohpe and
Bobby Woolf's book titled, “Enterprise Integration Patterns”.

One of the unique features of Camel is that it offers a Java Domain Specific
Language (DSL) that is used by Camel end-users to:

* Quickly implement all kinds of messaging patterns (routes).

« Interface to many different endpoints/components that are inherently supported by
Camel; e.g., SMTP, TCP/IP, FTP, JMS, HTTP, Servlets, AWS, AMQP, etc. A very long list! You
can also add your own custom components.

Camel’s Java DSL is combined with the MEL to facilitate the quick development

of Monlets.

AMon TTMmM

Total Transaction Management

AMon includes a SNMP v2 Agent and accompanying Management Information
Base (MIB)

The combination of these two components allow ActiveMQ to be monitored by
SNMP-capable management systems.
The SNMP Agent allows Monlets to generate SNMP fraps as an action

The MIB lists and describes all the ActiveMQ attributes that can be monitored via
AMon’s SNMP agent

The MIB attributes are a reflection of ActiveMQ's JIMX MBeans and their attributes

AMon TTM

Total Transaction Management

AMon and Monlets are configured through an external properties file. Through
this properties file, you can:

« Control the event message types that AMon will publish. By default, publishing of alll

event messages is disabled.
« Define Monlet-specific properties.
« Define SNMP-specific properties
Updating the properties can occur dynamically; i.e., there is no need to restart
the message broker if and when you update the properties.
AMon adheres to the JMX, so it can be managed/administered through any JMX
client. Through a JMX-client you can

« Start and stop AMon

+ Update and persist configuration properties

10

AMon

If you have any questions, please contact me:

joe.fernandez@ttmsolutions.com

TTM

Total Transaction Management

11

